The Effect of High Positive Potentials on the Different Charge Transport and Charge Transfer Parameters of Poly(O-Amnophenol) Modified Electrodes. A Study Using Cyclic Voltammetry, Steady-State Rotating Disc Electrode Voltammetry and AC Impedance Measurem

The Effect of High Positive Potentials on the Different Charge Transport and Charge Transfer Parameters of Poly(O-Amnophenol) Modified Electrodes. A Study Using Cyclic Voltammetry, Steady-State Rotating Disc Electrode Voltammetry and AC Impedance Measurem

R. Tucceri 

Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas (INIFTA) Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Sucursal 4, Casilla de Correo 16, (1900)- La Plata, Argentina.

Corresponding Author Email: 
rtucce@inifta.unlp.edu.ar
Page: 
305-315
|
Received: 
31 March 2005
| |
Accepted: 
6 January 2006
| | Citation
Abstract: 

Cyclic Voltammetry was employed to prepare fresh poly(o-aminophenol) (POAP) films and also to degrade them quantitatively. Then, the different behaviour of freshly prepared and degraded POAP films was studied by Steady-State Rotating Disc Electrode Voltammetry and Electrochemical Impedance Spectroscopy, when a mediated redox reaction is taking place at the polymer-solution interface. With regard to the last technique, the resulting experimental impedance diagrams of these POAP films, contacting the p-benzoquinone/hydroquinone redox couple, were interpreted on the basis of the homogeneous impedance model described in M.A. Vorotyntsev, C. Deslouis, M.M. Musiani, B. Tribollet, K. Aoki, Electrochimica Acta, 44 (1999) 2105-2115. The different dependencies of the charge transfer and charge transport parameters on the degree of degradation of the polymer (qRed,Max), were obtained. The different features of some of these dependencies (for instance, bulk electronic and ionic transport on qRed,Max) were explained in terms of the different mechanisms of electron and proton transport in this polymer. Also, similar behaviours of the transversal charge transfer resistance at the metal-polymer interface Rm| f (obtained by impedance spectroscopy) and the lateral resistance DR/R along the electrode (obtained by Surface Resistance measurements), as functions of qRed,Max, were explained in terms of two different aspects of the electron motion at metal surfaces contacting a polymeric material. The results of this work allows one to demonstrate that after to subject POAP films to rough conditions, as in some of practical applications of POAP, ion and electron diffusion inside the film and rates of interfacial charge transfer processes, are strongly reduced. It should be expected that this deterioration process reduces drastically the efficiency of the material to act in practical applications. 

Keywords: 

poly(o-aminophenol), mediation reaction, steady-state rotating disc electrode voltammetry, ac impedance measurements, charge transfer parameters, ion and electron diffusion.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
Acknowledgements

The author gratefully acknowledges the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) and also the Facultad de Ciencias Exactas, National University of La Plata (UNLP).

  References

[1] C. Barbero, J. Zerbino, L. Sereno, D. Posadas, Electrochim. Acta, 32, 693 (1987).

[2] T. Ohsaka, S. Kunimura, N. Oyama, Electrochim. Acta, 33, 639 (1988).

[3] A. Guenbourg, A. Kacemi, A. Benbachir, L. Aries, Prog. Org. Coat., 38, 121 (2000).

[4] C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem., 263, 333 (1989).

[5] S. Kunimura, T. Ohsaka, N. Oyama, Macromolecules, 21, 894 (1988).

[6] Y. Yang, Z. Lin, Synth. Met., 78, 111 (1996).

[7] C. Barbero, R.I. Tucceri, D. Posadas, J.J. Silber, L. Sereno, Electrochim. Acta, 40, 1037 (1995).

[8] R.I. Tucceri, C. Barbero, J.J. Silber, L. Sereno, D. Posadas, Electrochim. Acta, 42, 919 (1997).

[9] T. Komura, Y. Ito, T. Yamaguti, K. Takahasi, Electrochim. Acta, 43, 723 (1998).

[10] J.M. Ortega, Thin Solid Films, 371,28 (2000).

[11] R.I. Tucceri, J. Electroanal. Chem., 505, 72 (2001).

[12] R.I. Tucceri, J. Electroanal. Chem., 543, 61 (2003).

[13] H.J. Salavagione, J. Arias, P. Garcés, E. Morallón, C. Barbero, J.L. Vázquez, J. Electroanal Chem., 565, 375 (2004).

[14] H.J. Salavagione, J. Arias-Padilla, J.M. Pérez, J.L. Vázquez, E. Morallón, M.C. Miras, C. Barbero, J. Electroanal Chem., 576, 139 (2005).

[15] O. Levin, V. Kondratiev, V. Malev, Electrochim. Acta, 50, 1573 (2005).

[16] N. Hernández, J.M. Ortega, M. Choy, R. Ortíz, J. Electroanal. Chem., 515, 123 (2001).

[17] A.Q. Zhang, C.Q. Cui, J.Y. Lee, J. Electroanal. Chem., 413, 143 (1996).

[18] J. Yano, H. Kawakami, S. Yamasaki, Y. Kanno, J. of the Electrochemical Society, 148, E61-E65 (2001).

[19] M.J. Lobo, A.J. Miranda, J.M. López-Fonseca, P. Tuñón, Analytica Chimica Acta, 325, 33 (1996).

[20] M.A. Valdés García, P. Tuñón Blanco, A. Ivaska, Electrochim. Acta, 43, 3533 (1998).

[21] D. Pan, J. Chen, L. Nie,W. Tao, S. Yao, Electrochim. Acta, 49, 795 (2004).

[22] M.S. Golabi, A. Nozad, Electroanalysis, 15, 278 (2003).

[23] M.C. Miras, A. Badano, M.M. Bruno, C. Barbero, Portugaliae Electrochimica Acta, 21, 235 (2003).

[24] J.F. Rodríguez Nieto, R.I. Tucceri, D. Posadas, J. Electroanal. Chem., 403, 241 (1996).

[25] R. Tucceri, J. Electroanal. Chem., 562, 173 (2004).

[26] F.J. Rodríguez Nieto, R. Tucceri, J. Electroanal. Chem., 416, 1 (1996).

[27] M.A. Vorotyntsev, C. Deslouis, M.M. Musiani, B. Tribollet, K. Aoki, Electrochim. Acta, 44, 2105 (1999).

[28] R.I. Tucceri, D. Posadas, J. Electroanal. Chem., 191, 387 (1985).

[29] K.L. Chopra, “Thin Film Phenomena”, McGraw-Hill Co., New York, 1969.

[30] C. Barbero, J.J. Silber, L. Sereno, J. Electroanal. Chem., 291, 81 (1990).

[31] T. Komura, Y. Funahasi, T. Yamaguti, K. Takahasi, J. Electroanal. Chem., 446, 113 (1998).

[32] L.-L. Wu, J. Luo, Z.-H. Lin, J. Electroanal. Chem., 471, 53 (1996).

[33] M.A. Vorotyntsev, E. Vieil, J. Heinze, J. Electroanal. Chem., 450, 121 (1998).

[34] A. Bonfranceschi, A. Pérez Córdoba, S. Keunchkarian, S. Zapata, R. Tucceri, J. Electroanal. Chem., 477, 1 (1999).

[35] C.P. Andrieux, J.M. Savéant, J. Electroanal. Chem., 111, 377 (1980).

[36] E. Laviron, J. Electroanal. Chem., 112, 1 (1980).

[37] C. Deslouis, B. Tribollet, in “Advances in Electrochemical Science and Engineering”, Eds, H. Gerischer, C. Tobias, vol. 2, VCH Publishers, New York, USA, 1992, p. 205.

[38] F.M. Romeo, R.I. Tucceri, D. Posadas, Surf. Sci., 203, 186 (1988).

[39] K. Fuchs, proc. Camb., Phil. Soc. Math. Phys. Sci., 34, 100 (1938).

[40] R. Tucceri, Surface Science Reports, 56, 85 (2004).

[41] T. Ikeda, R. Schmehl, P. Denisevich, K. Willman, R.W. Murray, J. Am. Chem. Soc., 104, 2683 (1982).

[42] M.A. Vorotyntsev, Electrochim. Acta, 47, 2071, (2002).

[43] P.Agarwal, M.E. Orazem, L.H. García-Rubio, J. Electrochem. Soc., 139, 1917 (1992).

[44] P.Agarwal, O.D. Crisalle, M.E. Orazem, L.H. García-Rubio, J. Electrochem. Soc., 142, 4149 (1995).

[45] P.Agarwal, M.E. Orazem, L.H. García-Rubio, J. Electrochem. Soc., 142, 4159 (1995).

[46] M.E. Orazem, J.Electroanal. Chem., 572, 317 (2004).

[47] M.M. Musiani, Electrochim. Acta, 35, 1665 (1990).

[48] Ch.E.D. Chidsey, R.W. Murray, J. Phys. Chem., 90, 1479 (1986).

[49] G. Ybarra, C.Moina, F.V. Molina, M.I. Florit, D. Posadas, Electrochim. Acta, 50, 1505 (2005).

[50] L. Lizarraga, E.M. Andrade, F.V. Molina, J. Electroanal. Chem., 561, 127 (2004).

[51] F.J. Rodríguez Nieto, D. Posadas, R. Tucceri, J. Electroanal. Chem., 434, 83 (1997).