Nano Zinc Oxide for Efficient Activation of Aluminium Zinc Alloy Sacrificial Anode

Nano Zinc Oxide for Efficient Activation of Aluminium Zinc Alloy Sacrificial Anode

B. Jabeera T. S. Anirudhan S. M. A. Shibli

Department of Chemistry, University of Kerala, Kariavattom Campus, Trivandrum-695581 INDIA

Corresponding Author Email: 
smashibli@yahoo.com
Page: 
291-297
|
Received: 
27 March 2005
| |
Accepted: 
19 January 2006
| | Citation
Abstract: 

Zinc oxide nanoparticles were prepared by anodic dissolution of zinc metal strip under standardized experimental conditions. Aluminium zinc alloy sacrificial anodes reinforced with the zinc oxide nanoparticles were fabricated for application in cathodic protection of steel articles. The process of reinforcement with the particles not only improved the metallurgical properties of the anode but also the galvanic performance of the anodes significantly. The anode reinforced with the optimum quantity of the composite (1%) exhibited a galvanic efficiency as high as 94%. The anode exhibited high and steady anode potential, very low polarisation and very low self-corrosion during a prolonged galvanic exposure studies conducted with sodium chloride solution. The present results have further merits in terms of low cost, non-toxicity and easy disposal. 

Keywords: 

zinc oxide, nanoparticle, cathodic protection, aluminium alloy, sacrificial anode.

1. Introduction
2. Experimental Methods
3. Results and Discussion
4. Conclusions
Acknowledgements

The financial assistance through CSIR – SRF’ship (Gov’t of India) to one of the authors B. Jabeera is greatly acknowledged. The authors are grateful to The Head, Department of Chemistry, University of Kerala, for extending laboratory facilities.

  References

[1] E.Y. Lyublinskii, Elektrokhimiya.9 (1973) 491.

[2] G. Qi, Z. Guo and J. Qu; Zhongguo Fusho Xu Fanghu Xuebao 21 (2001) 220. (2001) [Chem. Abs. Vol. 136, No. 92314, (200)]

[3] I. Guruppa and J.S. Karnik, Corros. Prev. and Control 43 (1996) 77.

[4] S.L. Wolfson, Mater. Perform. 33 (1994) 22.

[5] Y.M. Liou, S.C. Chung, W.J. Tsai and S.C Shih, Corros. Prev. & Control 47 (2000) 57.

[6] A. Barbucci, G. Cerisola, G. Bruzzone and A. Saccone Electrochem. Acta 42 (1997) 2369.

[7] A.R. Despic, J. Appl. Electrochem. 6 (1976) 527.

[8] A. Barbucci, G. Cerisola, and G. Bruzzone, J. alloys and Compunds 247 (1997) 210.

[9] A. Ghosh, S. Chatterjee and B.K. Sarkar, Trans. Powder Metal. Assoc. India 26 (1999) 201.

[10] T. Kaji, H. Hattori, M. Hishikura and Y. Takeda, JP Patent 137676 (1999).

[11] T. Yamada, Y. Ogiwara and T. Doko, JP Patent 144290 (2000)

[12] M. Yan and Z. Fan, J. Mater. Sci. 36 (2001) 285.

[13] S.D. Pateves, Ceram. Inter. 22 (1996) 527.

[14] J.C. Viala, J. Bouix, G. Gonzalez and C. Esnouf, J. Mater. Sci. 32 (1997) 4559.

[15] J.P. Tu and Matsumura, Scripta. Matall. 40 (1999) 645.

[16] J.P. Tu, J. Pan, M. Matsumura and H. Fukunaga,Wear 223 (1998) 22.

[17] J.A. Yeomans and T.F. Page, J. Mater. Sci. 25 (1990) 2312.

[18] V. Laurent, D. Chatain, C. Chatillion and N. Eudthapoulas, Acta. Metal. 36 (1998) 1797.

[19] F. Hine, M. Yasuda and T. Yoshidaa, J. Electrochem. Soc. 124 (1978) 500.

[20] J. Augustynski, L. Balsenc and J. Hinden, J. Electrochem. Soc. 125 (1978) 1978.

[21] W.A. Geuard and B.C.H Steek, J. Appl. Electrochem. 8 (1978) 417.

[22] L.D. Bruke and O.J Murphy, J. Electroanal. Chem. 112 (1980) 39.

[23] B. Jabeera, Ph. D. Thesis, University of Kerala, INDIA (2002).

[24] A. Inoue, K. Nakazato, Y. Kawamura, A.P. Tsai and T. Masumoto, Mater. Trans., JIM, 35 (1994) 95.

[25] Z. L. Wang, Materials Today 7, 26-33 (2004).