Effect of Ni Content on the Structural and Electrochemical Properties of Mg1.9Cu0.1Nic alloys

Effect of Ni Content on the Structural and Electrochemical Properties of Mg1.9Cu0.1Niχ alloys

Z.G. HuangZ.P. Guo H.K. Liu S.X. Dou 

Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia

Corresponding Author Email: 
zh104@uow.edu.au
Page: 
283-289
|
Received: 
28 February 2005
|
Accepted: 
19 January 2006
|
Published: 
31 October 2005
| Citation
Abstract: 

Mg-based alloys, Mg1.9Cu0.1Nic (c = 1.8, 1.9, 2.0, 2.1), were fabricated through high-energy ball milling, and the effects of nickel content on the electrochemical characteristics have been investigated. A high discharge capacity of 490 mAhg−1 was observed for c = 1.8, compared with 435 mAhg−1 for c = 2.1. As to capacity degradation, 66.7 % of initial capacity was lost after 15 cycles for c = 1.8, while only 47.2 % for c = 2.1. Cyclic Voltammograms (CV) indicates that nickel can help maintain redox reaction current and consequently improve the cycle performance. The X-ray mapping analysis indicates that Mg, Ni, and Cu are uniformly distributed in the particles. The O content in the alloy electrodes after 15 cycles decreases with the increase of Ni content in the alloys, suggesting that Ni can efficiently suppress the formation of Mg(OH)2. The linear polarization curves show that the exchange current density, namely the rate of hydriding/dehydriding, increases from 13 mAg−1 to 133 mAg−1 when the nickel content varies from 1.8 to 2.1. This is also considered as a reason for the observed improved capacity stability.

Keywords: 

hydrogen storage, Mg-based alloys, mechanical alloying, electrochemical properties

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusion
Acknowledgements

Financial support from the Australian Research Council through an ARC Discovery project (DP 0449660) is gratefully acknowledged.

  References

[1] L. Sun, G.X. Wang, H.K. Liu, D.H. Bradhurst, S.X. Dou, Electrochem. Solid-State Lett., 3, 121 (2000).

[2] N.H. Goo, W.T. Jehong, K.S. Lee, J. Power Sources, 87, 118 (2000).

[3] S. Ruggeri, L. Roue, J. Power Sources, 117, 260 (2003).

[4] H.K. Liu, Encyclopedia of Nanoscience and Nanotechnology, 4, 775 (2004).

[5] D. Mu, Y. Hatano, T. Abe, K. Watanabe, J. Alloys Comp., 334, 232 (2002).

[6] T. Abe, S. Inoue, D. Mu, Y. Hatano, K. Watanabe. J. Alloys Comp., 349, 279 (2003).

[7] G. Mulas, L. Schiffini, G. Cocco, J. Mater. Res., 119, 3279 (2004).

[8] N. Cui, J.L. Luo, J. Alloys Comp., 265, 305 (1998).

[9] L.B. Wang, J.B. Wang, H.T. Yuan, Y.J. Wang, Q.D. Li, J. Alloys Comp., 385, 304 (2004).

[10] S.G. Zhang, K. Yorimitsu, S. Nohara, T. Morikawa, H. Inoue, C. Iwakura, J. Alloys Comp., 270, 123 (1998).

[11] S. Ruggeri, L. Roue, G.X. Liang, J. Huot, R. Schulz, J. Alloys Comp., 343, 170 (2002).

[12] M. Jurczyk, L. Smardz, A. Szajek, Mater. Sci. Eng. B 108, 67 (2004).

[13] C. Rongeat, L. Roué, J. Power Sources, 132, 302 (2004).

[14] P.H.L. Notten, P. Hokkeling, J. Electrochem. Soc., 138, 1877 (1991).

[15] H. Ye, H. Zhang, J.X. Cheng, T.S. Huang, J. Alloys Comp., 308, 163 (2000).

[16] Y. Fukumoto, M. Miyamoto, M. Matsuoka, C. Iwakura, Electrochim. Acta., 40, 845 (1995).

[17] H. Inoue, H. Iden, R. Shinya, S. Nohara, C. Iwakura, J. Electrochem. Soc., 151, A939 (2004).

[18] H. Senoh, M. Ueda, H. Inoue, N. Furukawa, C. Iwakura, J. Alloys Comp., 266, 111 (1998).

[19] S. Nohara, N. Fujita, S.G. Zhang, H. Inoue, C. Iwakura, J. Alloys Comp., 267, 76 (1998).

[20] S.G. Zhang, Y. Hara, T. Morikawa, H. Inoue, C. Iwakura, J. Alloys Comp., 293-295, 552 (1999).

[21] S.S. Han, H.Y. Lee, N.H. Goo, W.T. Jeong, K.S. Lee, J. Alloys Comp., 330–332, 841 (2002).

[22] L.Q. Li, I. Saita, K. Saito, T. Akiyama, Intermetallics, 10, 927 (2002).

[23] Z.X. Yu, Z.Y. Liu, E.D. Wang, Mater. Sci. Eng.A, 335, 43 (2002).

[24] G. Liang, S. Boily, J. Huot, A. Van Neste, R. Schulz, Mater. Sci. Forum, 267–272, 1049 (1998).

[25] B. Liao, Y.Q. Lei, L.X. Chen, G.L. Lu, H.G. Pan, Q.D. Wang, J. Alloys Comp., 376, 186 (2004).

[26] H.T. Yuan, E.D. Yang , H.B. Yang, B. Liu, L.B. Wang, R. Cao, Y.S. Zhang, J. Alloys Comp., 291, 244 (1999).

[27] Y.Q. Lei, Y.M. Wu, Q.M. Yang, J. Wu, Q.D. Wang, Z. Phys. Chem. 183, 1419 (1994).

[28] T.J. Ma, Y. Hatano, T. Abe, K.Watanabe, J. Alloys Comp., 391, 313 (2005).

[29] M.W. Meng, X.Y. Liu, J. Cheng, H.Y. Zhou, J. Alloys Comp., 372, 285 (2004).

[30] M. Pasturel, J.L. Bobet, B. Chevalier, J. Alloys Comp., 356–357, 764 (2003).

[31] N. Cui, J.L. Luo, K.T. Chuang, J. Alloys Comp., 302, 218 (2000).

[32] J.L. Luo, N. Cui, J. Alloys Comp., 264, 299 (1998).

[33] A.J. Bard, L.R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, Wiley, New York, 1980.

[34] T. Vogt, J.J. Reilly, J.R. Johnson, G.D. Adzic, J. McBreen, J. Electrochem. Soc., 146, 15 (1999).

[35] B.N. Popov, G. Zheng, R.E. White, J. Appl. Electrochem., 26, 603 (1996).