Synthesis and Electrocatalytic Properties of Ni-substituted Co3O4 for Oxygen Evolution in Alkaline Medium

Synthesis and Electrocatalytic Properties of Ni-substituted Co3O4 for Oxygen Evolution in Alkaline Medium

Basant Lal*
Ravindra Nath Singh
Narendra Kumar Singh

Department of Chemistry, Institute of Applied Science and Humanities, G.L.A. University, Mathura-281406 (U.P.), India

Department of Chemistry, Faculty of Science, Banaras Hindu University, Varanasi-221005 (U.P.) India

Department of Chemistry, Faculty of Science, University of Lucknow, Lucknow-226007, (U.P.) India

Corresponding Author Email: 
basant.lal@gla.ac.in
Page: 
163-170
|
DOI: 
https://doi.org/10.14447/jnmes.v21i3.a06
Received: 
February 03, 2018
|
Accepted: 
May 28, 2018
|
Published: 
August 20, 2018
| Citation
Abstract: 

Cobalt based Ni-substituted spinel-type oxides were synthesized by carbonate co-precipitation method using Na2CO3 as pre-cipitant and studied their electrocatalytic properties towards oxygen evolution reaction (OER) in alkaline medium. Materials were synthe-sized by using nitrates of nickel and cobalt. For electrochemical studies, oxide powder was transformed in the form of oxide film electrode on nickel substrate. Techniques used were cyclic voltammetry, electrochemical impedance spectroscopy (EIS) and anodic Tafel polariza-tion. Results obtained show that the Ni-substitution in Co3O4 matrix increase the oxide roughness factor considerably but did not signifi-cantly contribute in electrocatalytic properties for oxygen evolution reaction (OER). Tafel slope and order of reacton with respect to [OH-] concentration at low overpotential were found to be ~2.303RT/nF and ~1, respectively. The effect of temperature on the electrochemical behaviopur has also been investigated for oxide electrode. Thermodynamic parameters such as, standard electrochemical enthalpy of acti-vation ($\Delta \mathrm{H}_{\mathrm{el}}^{0\#}$), standard enthalpy of activation (ΔH0#) and standard entropy of activation (ΔS0#) were estimated by recording the Tafel polarization curves at different temperatures. X-ray diffraction (XRD), infrared (IR) spectroscopy and scanning electron microscope (SEM) techniques have been used to characterize the materials physicochemically.

Keywords: 

Oxygen evolution reaction, Spinel type oxide, Electrocatalysis, Tafel slope, Roughness factor

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgments

Authors owe the debt of gratitude to head of Department of Chemistry, Banaras Hindu University, Varanasi for providing required facilities to carry out this investigation.

  References

[1] Singh R. N., Koenig J. F., Poillerat G., Chartier P., J. Electrochem. Soc., 137, 1408 (1990).

[2] Rasiyah P., Tseung A. C. C., J. Electrochem. Soc., 130, 2384 (1993).

[3] Daghetti A., Lodi G., Trasatti S., Mater. Chem. Phys., 8, 1 (1983).

[4] Baydi M. El., Tiwari S. K., Singh R. N., Rehspringer J. L., Chartier P., Koenig J. F., Poillerat G., Solid State Chem., 116, 157 (1995).

[5] Tiwari S. K., Samuel S., Singh R. N., Poillerat G., Koenig J. F., Chartier P., Int. J. Hydrogen Energy, 9, 20 (1995).

[6] Boca C., Barbucci A., Delicchi M., Cerisola G., Int. J. Hydrogen Energy, 24, 21 (1999).

[7] Suffredini H. B., Cerne J. L., Crnkovic F. C., Machado S. A. S., Avaca L. A., Int. J. Hydrogen Energy, 25, 415 (2000).

[8] Chi B., Li J. B., Han Y. S., Chem Y. J., Int. J. Hydrogen Energy, 29, 605 (2004).

[9] Marsan B., Fradette N., Beaudoin G., J. Electrochem. Soc., 139, 1889 (1992).

[10] Bogglo R., Carugati A., Lodi G., Trasatti S., J. Appl. Electrochem., 15, 335 (1985).

[11] Singh R. N., Koenig J. F., Poillerat G., Chartier P.,J. Electr oanal. Chem., 314, 241 (1991).

[12] Alcantara R., Jaraba M., Lavela P., Tarado J. L., Chem. Mater., 14, 2847 (2002).

[13] Chardvick A. V., Savin S. L. P., Fiddy S., Alcantara R., Lisbona D. F., Lavela P., Ortiz G. F., Tirado J. L., J. Phys. Chem. C, 111, 4636 (2007).

[14] Chi B., Li J. B., Han Y. S., Dai J. H., Mater. Lett., 58, 1415 (2004).

[15] De Faria L. A., Prestat M., Koenig J. F., Chartier P., Trasatti S., Electrochim. Acta., 44, 1481 (1998).

[16] Cui B., Lin H., Li J. B., Li X., Yang J., Tao J., Adv. Funct. Mater., 18, 1440 (2008).

[17] Svegl F., Orel B., Hutchins M. G., Kalcher K., J. Electrochem. Soc., 143, 1532 (1996).

[18] Estrada W., Fantini M. C. A., de Castro S. C., Polo da Foneea C. N., Gorenstein A., J. Appl. Phys., 74 5835 (1993).

[19] Huili G., Dai L. Z., Lu D. S., Peng S. Y., J. Solid State Chem., 89, 167 (1990).

[20] Singh S. P., Samuel S., Tiwari S. K., Singh R. N., Int. J. Hydrogen Energy, 21(3), 171 (1996).

[21] Singh N. K., Tiwari S. K., Anitha K. L., Singh R. N., J. Chem. Soc. Faraday Trans., 92, 2397 (1996).

[22] Nikolov I., Darkaoui R., Zhecheva E., Stoyanova R., Dimitrov N., Vitano T., J. Electroanal. Chem., 429, 157 (1997).

[23] Singh J. P., Singh R. N., J. New Mat. Electrochem. System, 3, 131 (2000).

[24] Gennero De Chialvo M. R., Chialvo A .C., Electrochim. Acta, 38, 2247 (1993).

[25] Rios E., Nguyen-Cong H., Marco J. F., Gancedo J. P., Chartier P., Gautier J. L., Electrochim. Acta, 45, 4431 (2000).

[26] Chang S. K., Zainal Z., Tan K. B., Yusof N. A., Yusof W. M. D.W., Prabhakaran S. R. S., Sains Malaysiana, 41(4), 465 (2012).

[27] Cabo M., Pellicer E., Rossinyol E., Estrader M., Ortega A. L., Nogues J., Castell O., Surinnach S., Baro M. D., J. Mater. Chem., 20, 7021 (2010).

[28] Nkeng P., Poillerat G., Koenig J. F., Chartier P., Lefez B., Lenglet M., ECASIA, CA-16, 207 (1993); Poillerat G., Journal de Physique, , 4 C1, 107 (1994).

[29] Baggio R., Carugati A., Trasatti S., J. Appl. Electrochem., 17, 828 (1987).

[30] Hamdani M., Koenig J. F., Chartier P., J. Appl. Electrochem., 18, 568 (1988).

[31] Baukamp B. A., Solid State Ionics, 20, 31 (1986).

[32] Levine S., Smith A. L., Discuss Faraday Soc., 52, 290 (1971).

[33] Gileadi E., Electrode Kinetics (VCH Publishers Inc. New York), p. 151 (1993).