Optical and Electrochemical Properties of PB-ZnO and PB-ZnO/MWCNT Nanocomposite Films Deposited by Chemical Bath

Optical and Electrochemical Properties of PB-ZnO and PB-ZnO/MWCNT Nanocomposite Films Deposited by Chemical Bath

Fatma Özütok Emin Yakar

Physics Department, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey

Materials Science and Engineering, Çanakkale Onsekiz Mart University, 17020, Çanakkale, Turkey

Corresponding Author Email: 
fatmaozutok@comu.edu.tr
Page: 
119-126
|
DOI: 
https://doi.org/10.14447/jnmes.v21i2.462
Received: 
September 22, 2017
| |
Accepted: 
January 06, 2018
| | Citation
Abstract: 

The first aim of this study was to investigate the ZnO modification effect on the prussian blue (PB) films. A second aim of the study was to determine the decoration effect of multi walled carbon nanotube (MWCNT) on the PB-ZnO nanocomposite films which could be deposited by chemical bath. The electrochemical behaviour of PB films was systematically studied using ZnO- or ZnO/MWCNT modification. Additionally, detailed optical properties of nanocomposite films were determined by UV-VIS, FTIR and Raman spectroscopy. Optical transparency was severely decreased by ZnO modification onto PB film but the decoration of MWCNTs did not change the optical transparency of film compared to PB film. PB, ZnO and MWCNT presence in the nanocomposite films were proven by FTIR spectrum. Stretching vibration peak of C≡N shifted to short-wavelength for PB-ZnO nanocomposite films and same peak disappeared with MWCNT coating due to the structural distortion. ZnO modification and MWCNT coating affected the electrochemical properties due to the different factors such as OH- group effect in film growth process, Zn2+ substitution with Fe2+ site and interaction between ferricyanide ions and oxygen.

Keywords: 

Prussian blue films, ZnO structure, multi-walled carbon nanotubes, optical properties, electrochemical properties, chemical bath deposition

1. Introduction
2. Synthesis and Characterization of Nanocomposites
3. Results and Discussion
4. Conclusions
  References

[1] Cai, G., Wang, J., Lee, P., Acc. Chem. Res., (2016). Doi: 10.1021/acs.accounts.6b00183.

[2] Yang, P., Sun, P. , Mai, W., Materials Today, (2016). Doi: 10.1016/j.mattod.2015.11.007.

[3] Lee, E., DiBartolomeo, D.L., Klems, J.H., Yazdanian, M., Selkowitz, S.E., ASHRAE Transactions, 1 (2006).

[4] Hu, M., Belik, A.A., Imura, M., Mibu, K., Tsujimoto, Y., Yamauchi, Y., Chem. Mat., (2012). Doi: 10.1021/cm300615s.

[5] Adaka, S., Hart, M., Daemenc, L., Fohtunga, E., Nakotte, H., Journal of Electron Spectroscopy and Related Phenomena, (2017). Doi: 10.1016/j.elspec.2016.11.011.

[6] Abu-Salah, K.M., Alrokyan, S.A., Khan, M.N., Ansari, A.A., Sensors, (2010). Doi: 10.3390/s100100963.

[7] Kemell, M., Ritala, M., Leskel¨a, M., Critical Reviews in Solid State and Materials Sciences, (2005). Doi: 10.1080/104084305-90918341.

[8] Nossol, E., Zarbin, A.J.G., J. Mater. Chem. (2012). Doi: 10.1039/c1jm14225a.

[9] Zhai, J., Zhai, Y., Wen, D., Dong, S., Assembly and Electrochemical Behavior. Electroanalysis (2009). Doi: 10.1002/elan.-200904680.

[10] Du, D., Wang, M.,Qina, Y., Lin, Y., J. Mater. Chem., (2010). Doi: 10.1039/b919500a.

[11] Velevskaa, J.,Pecovska-Gjorgjevich, M.,Stojanov, N., Najdoski, M., Basic and Applied Research, 25, 380 (2016).

[12] Özütok, F., Demiri, S., Digest Journal of Nanomaterials and Biostructures, 12, 309 (2017).

[13] Allouche, N.K., Nasr, T.B., Kamouna, N.T., Guasch, C., Materials Chemistry and Physics, 123, 620 (2010).

[14] Yao, Y., Bai, X., Shiu, K., Nanomaterials, (2012). Doi:10.3390 /nano2040428.

[15] Prabakar, S.J.R., Jeong, J., Pyo, M., RSC Advances, (2015). Doi: 10.1039/c5ra04769b.

[16] Jomma, E.Y., Ding, S., Sensors, (2016). Doi:10.3390/s16020243.

[17] Salavagione, H.J., D´ıez-Pascual, A.M., Lazaro, E., Verab, S. , G´omez-Fatou, M.A., J. Mater. Chem. A, (2014). Doi: 10.1039/c4ta02159b.

[18] Salazar, P., Martín, M., O’Neill, R.D., Roche, R., González-Mora, J.L., Int. J. Electrochem. Sci., 7, 5910 (2012).

[19] Haghighi, B., Hamidi, H., Gorton, L., Sensors and Actuators B, (2010). doi:10.1016/j.snb.2010.03.020.

[20] Das, R., Md. Ali, Hamid, S.B.A., Annuar, M. S. M., Ramakrishna, S.: Common Wet Chemical Agents for Purifying Multiwalled Carbon Nanotubes. Journal of Nanomaterials (2014).Doi:10.1155/2014/945172.

[21] Thakura, B., Xiaoru Guo , Jingbo Chang , Michael Kron , Junhong Chen, Sensing and Bio-Sensing Research, (2017). Doi: 10.1016/j.sbsr.2017.05.002.

[22] Stević, Z, Vujasinović, M.R., Radunović, M., Sensors (2009). doi:10.3390/s90907365.

[23] Klapiszewski, L., Szalaty, T.J., Kurc, B., Stanisz, M., Skrzypczak, A., Jesionowski, T., Int. J. Mol. Sci., (2017).

doi:10.3390/ijms18071509.

[24] Mendez, P.F., Lopez, J.R., Lopez-Garc, U., Manr´ıquez, J., Frontana, C., Rodr´ıguez, F.J., God´ıneza, L.A., Journal of The Electrochemical Society, (2017). Doi: 193.255.97.46.

[25] Farah, A. M., Billing, C., Dikio, C. W., Dibofori-Orji, A.N., Oyedeji, O.O., Wankasi, D., Mtunzi, F.M., Dikio, D., Int. J. Electrochem. Sci., 8, 12132 (2013).

[26] Dutta, S., Chattopadhyay, S., Sarkar, A., Chakrabarti, M. Sanyal, D., Jana, D., Progress in Materials Science (2014). doi:10.1016/j.pmatsci.2008.07.002.

[27] Reguera, E., Fernández-Bertrán, J., Nuñez, L., Z. N aturforsch. 50b, 1067 (1995).

[28] Khan, Z.R., Khan, M.S., Zulfequar, M., Khan, M.S., Materials Sciences and Applications (2011). doi:10.4236/msa.2011.25044.

[29] Fan, M., Dai, D., Huang, B., Materials Analysis, 260 (2012). ISBN 978-953-51-0594-7.

[30] Noguchi, T., Kamimura, Y., Inoue, Y., Itoh, S., Plant Cell Physiol. 40, 305 (1999).

[31] Kettle, S.F.A., Diana, E., Marchese, E.M.C., Boccaleric, E., Stanghellini, P.L., J. Raman Spectrosc., (2011). Doi: 10.1002/

jrs.2944.

[32] Barsan, M.M., Butler, I.S., Fitzpatrick, J., Gilson, D.F.R., J. Raman Spectrosc., (2011). Doi: 10.1002/jrs.2931.

[33] Lisowska Oleksiak, A., Nowak, A.P., Jasulaitiene, V., Electrochemistry Communications 8, 107 (2006).

[34] Reyes, J.D., Juárez, J.M., Hernández de la Luz, D., Revista Colombiana de Materiales, 5, 103 (2014).

[35] Liu, X., Balla, I., Bergeron, H., Hersam, M.C., J. Phys. Chem. C, (2016). DOI: 10.1021/acs.jpcc.6b02073.

[36] Ghose, S., Rakshit, T., Ranganathanc, R., Jana, D., RSC Adv. (2015). DOI: 10.1039/c5ra13846a.

[37] Apopei, A.I., Buzgar, N., Buzatu, A., Seria Geologie, 57, 35 (2011).

[38] Costa, S., Borowıak-palen, E., Kruszyńska, M., Bachmatıuk, A., Kaleńczuk, R.J., Materials Science-Poland, 26, 433 (2006).

[39] Zhang, N., Wang, G., Gu, A., Feng, Y., Fang, B., Microchim. Acta, (2010). Doi: 10.1007/s00604-009-0274-8.