Synthesis and Characterization of Li(Li0.05Ni0.6Fe0.1Mn0.25)O2 Cathode Material for Lithim Ion Batteries

Synthesis and Characterization of Li(Li0.05Ni0.6Fe0.1Mn0.25)O2 Cathode Material for Lithim Ion Batteries

A. Nichelson S. Thanikaikarasan* K. Karuppasamy S. Karthickprabhu T. Mahalingam X. Sahaya Shajan Edgar Valenzuela

Centre for Scientific and Applied Research, PSN College of Engineering and Technology, Tirunelveli-627 152, Tamil Nadu, India.

St. Mother Theresa Engineering College, Vagaikulam, Mudivaithanenthal Post, Thoothukudi, Tamil Nadu 628 102, India

Department of Physics, Saveetha School of Engineering, Saveetha University, Thandalam – 602105, Chennai, Tamil Nadu, India.

Division of Electronics and Electrical Engineering, Dongguk University-Seoul, Seoul 04620, South Korea

K.Ramakrishnan College of Technology, Samayapuram, Trichy-621 112

Department of Physics, Alagappa University, Karaikudi 630 003, Tamil Nadu, India

Facultad de Ingeniería, UABC Mexicali, 21280, México

Corresponding Author Email:,
31 October 2017
22 January 2018
18 April 2018
| Citation

A new type of lithium enriched cathode material Li (Li0.05Ni0.6Fe0.1Mn0.25)O2 was synthesized by sol-gel method with citric acid as a chelating agent. The structural and morphological studies were systematically investigated through X-ray diffraction, SEM with EDS, FT-IR and Raman analyses. The crystallite size of the Li (Li0.05Ni0.6Fe0.1Mn0.25)Ocathode material was found to be 45 nm thereby leads to the feasible movement of lithium ion all through the material. FT-IR spectroscopy was used to confirm the metal-oxygen interaction in the prepared cathode material. The electrical properties of the Li (Li0.05Ni0.6Fe0.1Mn0.25)Ocathode material were studied by impedance and dielectric spectral analyzes. Li (Li0.05Ni0.6Fe0.1Mn0.25)Oshowed a maximum ionic conductivity of 10-6 S/cm at ambient temperature.


Sol-gel synthesis, Li(Li0.05Ni0.6Fe0.1Mn0.25)O2, nanoparticles, lithium ion batteries

1. Introduction
2. Experimental Detams
3. Results and Discussion
4. Conclusions

[1] J.-M. Tarascon, M. Armand, Nature, 414, 359 (2001).

[2] D.K. K. Karuppasamy, Yong Hee Kang, K. Prasanna, Hee Woo Rhee, J. Indust. and Engi Chem., /j.jiec.2017.03 (2017).

[3] H.W.R. K. Karuppasamy, P. Anil Reddy, Dipti Gupta, Liviu Mitu, Anji Reddy Polu, X. Sahaya Shajan, J. of Indust. and Engi. Chem., DOI: 10.1016/j.jiec.2016.06.020 (2016).

[4] H.-S.K. K. Karuppasamy, Dongkyu Kim, Dhanasekaran Vikraman, K. Prasanna, A.Kathalingam, Ramakant Sharma, Hee Woo Rhee, Scientific Reports, (10.1038/s41598-017-11614-1) 11103 (2017).

[5] J.W. Fergus, J. Power Sources, 195, 939 (2010).

[6] M.S. Whittingham, Chem. review, 104, 4271 (2004).

[7] A. Nichelson, S. Karthickprabhu, K. Karuppasamy, G. Hirankumar, X. Sahaya Shajan, Mater. Focus 5 324, (2016).

[8] S Karthickprabhu, G Hirankumar, A Maheswaran, C Sanjeeviraja, J. Alloys and Compds., 548, 65 (2013).

[9] T. Ohzuku, M. Nagayama, K. Tsuji, K. Ariyoshi, Journal of Materials chemistry, 21, 10179 (2011).

[10] S Karthickprabhu, G Hirankumar, Int J ChemTech Res, 6, 5256 (2014).

[11] H. Yoshizawa, T. Ohzuku, J. Power Sources, 174, 813 (2007).

[12] S Karthickprabhu, G Hirankumar, A Maheswaran, RSD Bella, C Sanjeeviraja, Ionics, 21, 345 (2015).

[13] Y. Koyama, I. Tanaka, H. Adachi, Y. Makimura, T. Ohzuku, J. Power Sources, 119, 644 (2003).

[14] T. Ohzuku, Y. Makimura, Chemistry Letters, 30, 744 (2001).

[15] H. Tang, F. Zhao, Z.-r. Chang, X.-Z. Yuan, H. Wang, Journal of The Electrochemical Society, 156, A478 (2009).

[16] N.N. Sinha, N. Munichandraiah, ACS applied materials & interfaces, 1, 1241 (2009).

[17] C.-C. Wang, A. Manthiram, Journal of Mater. Chem. A, 1, 10209 (2013).

[18] A. Rougier, I. Saadoune, P. Gravereau, P. Willmann, C. Delmasa, Solid State Ionics, 90, 83 (1996).

[19] B. Hwang, R. Santhanam, D. Liu, J. power sources, 97, 443 (2001).

[20] S.K. Jeong, C.-H. Song, K.S. Nahm, A.M. Stephan, Electrochim. Acta, 52, 885 (2006).

[21] J.-H. Kim, C. Park, Y.-K. Sun, Solid State Ionics, 164, 43 (2003).

[22] S. Thanikaikarasan, T. Mahalingam, K. Sundaram, A. Kathalingam, Y.D. Kim, T. Kim, Vacuum, 83, 1066 (2009).

[23] X. Jin, Q. Xu, X. Yuan, L. Zhou, Y. Xia, Electrochim. Acta, 114, 605 (2013).

[24] A. Nichelson, S. Thanikaikarasan, Pratap Kollu, P.J. Sebastian, T. Mahalingam and X.Sahaya Shajan, J. New Mat. Electr. Sys. 17, 153 (2014).

[25] P. Suresh, S. Rodrigues, A. Shukla, H. Vasan, N. Munichandraiah, Solid State Ionics, 176, 281 (2005).

[26] K. Karuppasamy, C.V. Vani, R. Antony, S. Balakumar, X.S. Shajan, Polymer Bulletin 70, 2531 (2013).

[27] K. Karuppasamy, C.V. Vani, A. Nichelson, S. Balakumar, X.S. Shajan, Effect of nanochitosan and succinonitrile on the AC ionic conductivity of plasticized nanocomposite solid polymer electrolytes (PNCSPE), AIP Conference Proceedings, AIP 845 (2013).

[28] C. Ambika , G.Hirankumar, S. Karthickprabhu, R. S. Daries Bella, , Int J ChemTech Res, 6, 5209 (2014).

[29] B.N. Rao, M. Venkateswarlu, N. Satyanarayana, Ionics, 20, 175 (2014).

[30] K. Karuppasamy, T. Linda, S. Thanikaikarasan, S. Balakumar, T. Mahalingam, P. Sebastian, X. Sahaya Shajan, J. New Mat. Electr. Sys., 16, 116 (2013).

[31] K. Karuppasamy, S. Thanikaikarasan, S. Balakumar, P. Thiravetyan, D. Eapen, P. Sebastian, X.S. Shajan, J. New Mat. Electr. Sys., 16, 2 (2013).

[32] S Karthickprabhu, G Hirankumar, S Thanikaikarasan, PJ Sebastian, J. New Mat. Electr. Sys., 17, 159 (2014).

[33] RS Daries Bella, S Karthickprabhu, A Maheswaran, C Amibika, G Hirankumar, Premanand Devaraj, Physica B: Condensed Matter, 458, 51 (2015).