Study of Ethanol Electrooxidation Reaction at Room Temperature on Nanometric Pt-Ru, Pt-Sn and Pt-Ru-Sn in Direct Alcohol Fuel Cells

Study of Ethanol Electrooxidation Reaction at Room Temperature on Nanometric Pt-Ru, Pt-Sn and Pt-Ru-Sn in Direct Alcohol Fuel Cells

F. Ginez Carbajal M. A. García S. A. Gamboa*

Universidad Politécnica del Estado de Guerrero. Carretera Federal Iguala-Taxco Km 105 Puente Campuzano, 40321. Taxco de Alarcón Guerrero, México.

Instituto de Energías Renovables, Universidad Nacional Autónoma de México. Privada Xochicalco s/n, Centro, 62580, Temixco, Morelos, México.

Corresponding Author Email: 
sags@ier.unam.mx
Page: 
43-49
|
DOI: 
https://doi.org/10.14447/jnmes.v21i1.522
Received: 
17 October 2017
|
Accepted: 
22 January 2018
|
Published: 
17 April 2018
| Citation
Abstract: 

Ethanol electrooxidation in acid medium was investigated on Pt-Ru-Sn/C, Pt-Ru/C and Pt-Sn/C. The electrocatalysts were synthesized by microwave assisted chemical reduction reaction. The samples were characterized by transmission electron microscopy (TEM), X-ray diffraction analysis (XRD) and electrochemical analysis for the electrooxidation of ethanol. The ternary electrocatalyst was evaluated in an experimental Direct Ethanol Fuel Cell (DEFC). The method of synthesis used in this work allowed the formation of nanostructured electrocatalysts. The results obtained by electrochemical studies showed that the ternary system Pt-Ru-Sn/C exhibited the highest activity with respect to the binary systems Pt-Ru/C and Pt-Sn/C for carrying out the ethanol electrooxidation reaction. 0.4 mg∙cm-2 of electrocatalytic load of Pt-Ru-Sn/C was placed in the anode of an experimental fuel cell operating at room temperature. It was possible to obtain a power density of 0.14, 0.12 and 0.11 mW∙cm-2 after 20, 40 and 60 minutes respectively. The experiments were carried out at a controlled temperature of 297 K and they showed the feasibility to produce electricity at room temperature by using this ternary electrocatalyst in Direct Ethanol Fuel Cells.

Keywords: 

Nanostructured Electrocatalyst, Pt-Ru-Sn/C, Ethanol electrooxidation, Direct Ethanol Fuel Cell.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgments

Authors like to thank Mrs. Maria Luisa Ramon Garcia for the XRD characterization and discussion of results and Mr. Gildardo Casarrubias Segura for sample preparations. Mr. Carlos Flores Morales, Dr. Hilda Esparza Ponce and Dr. Jose lvaro Chavez Carvayar, for their support for the samples characterization by TEM. Authors are also grateful to CONACYT Grants 128545 and DGAPA PAPIIT IN111011 to develop and support this project. CONACYT Ph.D. scholarship 212785 for Francisco Ginez is appreciated.

  References

[1] Antoniassi R.M, Silva J. C. M, Oliveira Neto A, Spinacé E.V., Appl. Catal., B., 254, 120 (2017).

[2] Chu, Y. H. Shul, Y. G, Int. J. Hydrogen Energy, 35, 11261 (2010).

[3] Badwal, S. P. S., Giddey, S., Kulkarni, A., Goel, J., Basu, S., Appl. Energy, 145, 80 (2010).

[4] Antoniassi, R. M., Oliveira Neto, A., Linardi, M, Spinacé, E. V., Int. J. Hydrogen Energy, 38, 12069 (2013).

[5] Chen, F., Ren, J, He, Q., Liu, J, Song, R., J. Colloid Interface Sci., 497, 276 (2017).

[6] Narayanamoorthy, B., Datta, K. K. R., Eswaramoorthy, M, Balaji, S., ACS Catal., 4, 3621 (2014).

[7] Li, S., Hui X., Zhiping X, Ke Z, Caiqin W, Bo Y, Jun G, Yukou D. Appl. Surf. Sci., 422, 172 (2017).

[8] El Jawad, M. K., Gilles, B, Maillard, F., Key Eng. Mater., 735, 219 (2017).

[9] Tao, J. ping , Qing-shuang Ji, Gui-fang Shao, Ze-peng Li, Tun-dong Liu, Yu-hua Wen, J. Alloys Compd., 716, 240 (2017).

[10] Aoki, N. Inouea H., Shiraib, A., Higuchib,S., Matsuib,Y., Daimonb H., Doib T., Inaba, M. Electrochim. Acta, 244, 146 (2017).

[11] Dong H, Dong L., Inorg. Organomet. Polym., 21, 754 (2011).

[12] Nakagawa N, Kaneda Y, Wagatsuma M, Tsjiguchi T, J. Power Sources, 199, 103 (2012).

[13] García G, Tsiouvaras N, Pastor E, Peña AM, Fierro GJL, Martínez-Huerta VM, Int. J. Hydrogen Energy, 37, 7131 (2012).

[14] Ribadeneira E, Hoyos AB, J. Power Sources, 180, 238 (2008).

[15] Oliveira NA, Dias RR, Tusi MM, Linardi M, Spinacé VE, J. Power Sources, 166, 87 (2007).

[16] Spinacé VE, Oliveira NA, Vasconcelos TRR, Linardi M, J. Power Sources, 137, 17 (2004).

[17] Chen WX, Lee JY, Liu Z, Chem. Commun., 2588 (2002).

[18] Li L, Huang M, Liu J, Guo Y, J. Power Sources., 196, 1090 (2011).

[19] Ma Y, Wang H, Ji S, Linkov V, Wang R, J. Power Sources, 247, 142 (2014).

[20] Guo L, Chen S, Li L, Wei Z, J. Power Sources, 247, 360 (2014).

[21] Zou L, Guo J, Liu J, Zou Z, Akins LD, Yang H, J. Power Sources, 248, 356 (2014).

[22] Barreto BC, Parreira LTR, Goncalves RR, De Azevedo CD, Fritz Huguenin, J. Power Sources, 185, 6 (2008).

[23] Guo J.W, Zhao T.S, Prabhuram J, Wong C.C, Electrochimica Acta, 50, 1973 (2005).

[24] Wang H, Jusys Z, Behn RJ, J. Power Sources, 154, 351 (2006).

[25] Fujiwuara N, Friedrich KA, Stimming U., J. Electroanal. Chem., 472, 120 (1999).

[26] Razmi H, Habibi Es, Heidari H, Electrochim Acta, 53, 8178 (2008).

[27] Shao MH, Adzic RR, Electrochim. Acta, 50, 2415 (2005).

[28] Wang MY, Chen JH, Fan Z, Tang H, Deng GH, He DL, Kuang YF, Carbon, 42, 3257 (2004).

[29] Hoa LQ, Vestergaard MC, Yoshikawa H, Saito M, Tamiya E, Electrochemistry Communications, 13, 746 (2011).

[30] Wongyao N, Therdthianwong A, Therdthianwong S, Energy Conversion and Management, 52, 2676 (2011).

[31] Tayal J, Rawat B, Basu S, Int. J. Hydrogen Energy, 37, 4597 (2012).

[32] Battirola LC, Schneider JF, Torriani ICL, Tremiliosi-Filho G, Rodrigues-Filho UP, Int. J. Hydrogen Energy, 38, 12060 (2013).

[33] Chu HY, Shul GY, Int. J. Hydrogen Energy, 35, 11261 (2010).

[34] Rousseau S, Coutanceau C, Lamy C, Léger J-L, J. Power Sources, 158, 18 (2006).