TiO2-B/Ag Nanocomposite Wires Enhanced Electrochemical Performance for Li-ion Batteries

TiO2-B/Ag Nanocomposite Wires Enhanced Electrochemical Performance for Li-ion Batteries

Jinlong Wang Kaixin Song* Changqing Tong Guanglei Tian Jun Wu Huifang Gao Junming Xu

College of electronic information and engineering, Hangzhou Dianzi University, 310018, Hangzhou

College of Materials Science and Environment engineering, China Jiliang University, 310018, Hangzhou

Corresponding Author Email: 
25 June 2017
| |
18 September 2017
| | Citation

In this work, the pristine and Ag-composited TiO2-Bronze (TiO2-B) nanowires are successfully synthesized by hydrothermal method using anatase(P25) as titanium source. The SEM, TEM results reveal that the silver particles are well distributed on the TiO2-B nanowires. Also, the TiO2-B/Ag nanowires are dispersed very well, which demonstrate more Li-ion insertion/extraction hosts exposed to the electrolyte. Moreover, the electrochemical performance tests suggest that compared with the pristine TiO2-B, the Ag-composited TiO2-B (TiO2-B/Ag) shows remarkably higher capacities (~286mAhg-1, closing to the theoretical capacity) and superior rate capability. The reasons causing this performance difference are ascribed to the added silver particles, which could reduce the Li-ion diffusion length and improve the material electrical conductivity.


hydrothermal,TiO2-B/Ag, nanowires

1. Introduction
2. Experimental Section
3. Results and Discussion
4. Conclusion
5. Acknowledgements

[1] C. Liu, F. Li, L.-P. Ma and H.-M. Cheng, Adv. Mater.,22, E28 (2010).

[2] J. B. Goodenough and K.-S. Park, J. Am. Chem. Soc., 135, 1167 (2013).

[3] B. Dunn, H. Kamath and J.-M. Tarascon, Science, 334, 928 (2011).

[4] V. Etacheri, R. Marom, R. Elazari, G. Salitra and D. Aurbach, Energy Environ. Sci., 4, 3243 (2011).

[5] E. Uchaker and G. Cao, Nano Today, 9, 499 (2014).

[6] M. Armand and J. M. Tarascon, Nature, 451, 652 (2008).

[7] Y.-S. Su, Y. Fu, T. Cochell and A. Manthiram, Nat. Commun., 4, 2985 (2013).

[8] J.-T. Han, Y.-H. Huang and J. B. Goodenough, Chem. Mater., 23, 2027 (2011).

[9] H. Li, L. Shen, G. Pang, S. Fang, H. Luo, K. Yang and X. Zhang, Nanoscale, 7, 619 (2015).

[10]J. Shu, Electrochem. Solid-State Lett., 11, A238 (2008).

[11]L. Shen, B. Ding, P. Nie, G. Cao and X. Zhang, Adv. Energy Mater., 3, 1484 (2013).

[12]M. M. Thackeray, C. Wolverton and E. D. Isaacs, Energy Environ. Sci., 5, 7854 (2012).

[13]P. G. Bruce, B. Scrosati and J. M. Tarascon, Angew. Chem., Int. Ed., 47, 2930 (2008).

[14]X. Su, Q. Wu, X. Zhan, J. Wu, S. Wei and Z. Guo, J. Mater. Sci., 47, 2519 (2012).

[15]Z. Hong and M. Wei, J. Mater. Chem. A, 2013, 1, 4403 (2013).

[16]A. R. Armstrong, G. Armstrong, J. Canales, R. García and P. G. Bruce, Adv. Mater., 17, 862 (2005).

[17]H. Liu, Z. Bi, X.-G. Sun, R. R. Unocic, M. P. Paranthaman, S. Dai and G. M. Brown, Adv. Mater., 23, 3450 (2011).

[18]S. Liu, H. Jia, L. Han, J. Wang, P. Gao, D. Xu, J. Yang and S. Che, Adv. Mater., 24, 3201 (2012).

[19]V. Etacheri, Y. Kuo, A. Van der Ven and B. M. Bartlett, J. Mater. Chem. A, 1, 12028 (2013).

[20]V. Etacheri, J.E. Yourey, B.M. Bartlett, ACS Nano, 8, 1491 (2014).

[21]T. Lan, J. Dou, F. Xie, P. Xiong, M. Wei, J. Mater. Chem. A, 3, 10038 (2015).

[22]Z. Yang, G. Du, Z. Guo, X. Yu, Z. Chen, T. Guo, H. Liu, J. Mater. Chem., 21, 8591 (2011).

[23]H.C. Tao, L.Z. Fan, X. Yan, X. Qu, Electrochim. Acta, 69, 328 (2012).

[24]Z. Sun, X. Huang, M. Muhler, W. Schuhmann, E. Ventosa, Chem. Commun., 50, 3306 (2014).

[25]X. Li, Y. Zhang, T. Li, Q. Zhong, H. Li, J. Huang, J. Power Sources, 268, 372 (2014).

[26]X. Yan, Y. Li, M. Li, Y. Jin, F. Du, G. Chen, Y. Wei, J. Mater. Chem. A, 3, 4180 (2015).

[27]M. Zhen, S. Guo, G. Gao, Z. Zhou, L. Liu, Chem. Commun., 51, 507 (2015).

[28]C. Chen, X. Hu, Z. Wang, X. Xiong, P. Hu, Y. Liu and Y. Huang, Carbon, 69, 302 (2014).

[29]M. Zhen, S. Guo, G. Gao, Z. Zhou and L. Liu, Chem. Commun., (2015).

[30]T. Beuvier, M. Richard-Plouet, M. Mancini-Le Granvalet, T. Brousse, O. Crosnier and L. Brohan, Inorg. Chem., 49, 8457 (2010).

[31]Zhang Y, Meng Y, Zhu K, Qiu H, Ju Y, Gao Y, Du F, Zou B, Chen G, Wei Y., J. Acs Applied Materials & Interfaces (2016).

[32]L. Cui, J. Shen, F. Cheng, Z. Tao and J. Chen, J. Power Sources, 196, 2195 (2011).