Structural, Electrical and Electrochemical Properties of Mg0.55Si1.9Al0.1Fe0.1(PO4)3 Ceramic Electrolytes

Structural, Electrical and Electrochemical Properties of Mg0.55Si1.9Al.Fe0.1(PO4)3 Ceramic Electrolytes

Nurul Akmaliah Dzulkurnain N. A. Mustaffa N. S. Mohamed*

School of Chemistry & Food Technology, Faculty of Science & Technology, National University of Malaysia, 43600 Bangi, Selangor, Malaysia

Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor, Malaysia

Centre for Foundation Studies in Science, University of Malaya, 50603 Kuala Lumpur, Malaysia

Corresponding Author Email:
15 April 2017
04 July 2017
3 August 2017
| Citation

This study was undertaken to investigate the structural, electrical and electrochemical properties of Fe3+ substituted Mg0.55Si1.9Al0.1(PO4)3compound synthesized by water-based sol–gel technique. X-ray diffraction showed that the compound crystallized in monoclinic crystalline phase with a space group of P1 21/c1. The sample sintered at 850 ˚C exhibited the highest conductivity of 1.42 × 10-6 S cm-1 at 373 K since it contained the highest number of mobile ions. It also exhibited the highest value of ion mobility, μ of 1.13 × 10-11 cm2 V-1 s-1 at ambient temperature which was attributed to the optimum size of migration channel as indicated by its unit cell volume. Linear sweep voltammetry result showed that the Mg0.55Si1.9Al0.1Fe0.1(PO4)was electrochemically stable up to 3.0 V. Meanwhile, its ionic transference number of 0.99 suggested that the majority of the mobile charge carriers were mainly to ions, expected to be Mg2+ ions.

1. Introduction
2. Experimental Procedure
3. Results and Discussion
4. Conclusions

[1] M. Kotobuki, M. Koishi, Ceramics International, 39, 4645 (2013).

[2] N. Anantharamulu, K.K. Rao, G. Rambabu, B.V. Kumar, V. Radha, M. Vithal, J. Mater. Sci., 46, 2821 (2011).

[3] H.Y.-P. Hong, Materials Research Bulletin, 11, 173 (1976).

[4] J.B. Goodenough, H.Y.-P. Hong, J.A. Kafalas, Materials Research Bulletin, 11, 203 (1976).

[5] J.W. Fergus, Solid State Ionics, 227, 102 (2012).

[6] P. Knauth, Solid State Ionics, 180, 911 (2009).

[7] W. Song, X. Ji, Z. Wu, Y. Zhu, Y. Yang, J. Chen, M. Jing, F. Li, C.E. Banks, Journal of Materials Chemistry A, 2, 5358 (2014).

[8] P. Yadav, M.C. Bhatnagar, Ceramics International, 38, 1731 (2012).

[9] H. Aono, E. Sugimoto, Y. Sadaoka, N. Imanaka, G. Adachi, Solid State Ionics, 40, 38 (1990).

[10]E. Zhao, F. Ma, Y. Jin, K. Kanamura, Journal of Alloys and Compounds, 680, 646 (2016).

[11]J. Kuwano, N. Sato, M. Kato, K. Takano, Solid State Ionics, 70, 332 (1994).

[12]C.-M. Chang, S.-H. Hong, H.-M. Park, Solid State Ionics, 176, 2583 (2005).

[13]K. Arbi, M. Ayadi-Trabelsi, J. Sanz, Journal of Materials Chemistry, 12, 2985 (2002).

[14]M. Illbeigi, A. Fazlali, M. Kazazi, A.H. Mohammadi, Solid State Ionics, 289, 180 (2016).

[15]R. Norhaniza, R.H.Y. Subban, N.S. Mohamed, Advanced Materials Research, 129-131, 338 (2010).

[16]N.A. Mustaffa, S.B.R.S. Adnan, M. Sulaiman, N. Mohamed, Ionics, 21, 955 (2015).

[17]N.A. Mustaffa, N.S. Mohamed, Int. J. Electrochem. Sci., 10, 5382 (2015).

[18]S. Tamura, M. Yamane, Y. Hoshino, N. Imanaka, Journal of Solid State Chemistry, 235, 7 (2016).

[19]K. Nomura, S. Ikeda, K. Ito, H. Einaga, Journal of Electroanalytical Chemistry, 326, 351 (1992).

[20]N.K. Anuar, S.B.R.S. Adnan, N.S. Mohamed, Ceramics International, 40, 13719 (2014).

[21]N.K. Anuar, S.B.R.S. Adnan, M.H. Jaafar, N.S. Mohamed, Ionics, 22, 1125 (2016).

[22]N.K. Anuar, N.S. Mohamed, Journal of Sol-Gel Science and Technology, 80, 249 (2016).

[23]Z.A. Halim, S.B.R.S. Adnan, N.S. Mohamed, Ceramics International, 42, 4452 (2016).

[24]S.B.R.S. Adnan, N.S. Mohamed, International Journal of Electrochemical Science, 7, 9844 (2012).

[25]N.A. Mustaffa, N.S. Mohamed, Journal of Sol-Gel Science and Technology, 77, 585 (2016).

[26]A. Gaber, M. Abdel-Rahim, A. Abdel-Latief, M.N. Abdel-Salam, J. Electrochemistry Sci., 9, 81 (2014).

[27]N.A. Mustaffa, S.B.R.S. Adnan, M. Sulaiman, N. Mohamed, Ionics, 1, (2014).

[28]F. Krok, Solid State Ionics, 24, 21 (1987).

[29]A. Gaber, M.A. Abdel-Rahim, A.Y. Abdel-Latief, M.N. Abdel-Salam, J. Electrochemistry Sci., 9, 81 (2014).

[30]D.P. Almond, G.K. Duncan, A.R. West, Solid State Ionics, 8, 159 (1983).

[31]L.P. Teo, M.H. Buraidah, A.F.M. Nor, S.R. Majid, Ionics, 18, 655 (2012).

[32]T. Savitha, S. Selvasekarapandian, C.S. Ramya, M.S. Bhuvaneswari, G. Hirankumar, R. Baskaran, P.C. Angelo, Journal of Power Sources, 157, 533 (2006).

[33]M. Vijayakumar, G. Hirankumar, M.S. Bhuvaneswari, S. Selvasekarapandian, Journal of Power Sources, 117, 143 (2003).

[34]E. Traversa, H. Aono, Y. Sadaoka, L. Montanaro, Sensors and Actuators B: Chemical, 65, 204 (2000).

[35]P.B. Bhargav, V.M. Mohan, A. Sharma, V.V.R.N. Rao, International Journal of Polymeric Materials, 56, 579 (2007).

[36]P. Saha, M.K. Datta, O.I. Velikokhatnyi, A. Manivannan, D. Alman, P.N. Kumta, Progress in Materials Science, 66, 1 (2014).