Dye-sensitized Solar Cell (DSSC) Utilizing TiO2 Films Prepared via Microwave Irradiation Technique: Effect of TiO2 Growth Time

Dye-sensitized Solar Cell (DSSC) Utilizing TiO2 Films Prepared via Microwave Irradiation Technique: Effect of TiO2 Growth Time

M.Y.A. Rahman* L. Roza S.A.M. Samsuri A.A. Umar M.M. Salleh

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Jurusan Fisika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Prof. Dr. Hamka, 13730, Jakarta Timur, Indonesia

Page: 
59-64
|
DOI: 
https://doi.org/10.14447/jnmes.v20i2.298
Received: 
18 December 2016
| |
Accepted: 
01 March 2017
| | Citation
Abstract: 

This paper is concerned with the influence of TiO2 films growth time on the performance parameters of a DSSC. The films were prepared via microwave irradiation technique by varying growth times, 3, 5, 7, 10 and 12 minutes. The XRD results reveal that ana-tase phase exists at (101) and (004) plane with the biggest crystallite size was obtained at the growth time of 3 minutes. The FESEM ima-ges show that morphological shape of nanotablet was obtained at shorter irradiation time. The particle size and thickness were found to increase with growth time. However, the particle density decreases with growth time. The uncoated dye and coated dye samples grown at 10 minutes possesses the highest optical absorption and the broadest absorption window. The DSSC utilizing the TiO2 samples did not show rectification property. It was found that the photovoltaic parameters of the DSSC are greatly influenced by the growth time of TiO2 films. The DSSC utilizing the sample prepared for 10 minutes demonstrated the highest JSC, Voc and η of 2.60 mA cm-2, 0.62 V and 0.86%, respectively due to broadest absorption window, the highest recombination resistance (Rcr) and longest charge carrier lifetime (τ).

Keywords: 

dye-sensitized solar cell, microwave, photoanode, titanium dioxide

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgments
  References

[1] S.H Ko, D. Lee, H.W. Kang, K.H. Nam, J.Y. Yeo, S.J. Hong, Nano Lett., 11, 666 (2011).

[2] M.Y.A. Rahman, A.A. Umar, R. Taslim, M.M. Salleh, Electro-chim. Acta, 88, 639 (2013).

[3] S. Gubbala, V. Chakrapani, V. Kumar, M.K. Sunkara, Adv. Func. Mat., 18, 2411 (2008).

[4] S.M. Yong, T. Nikolay, B.T. Ahn, D.K. Kim, J. Alloy. Comp., 547, 113 (2013).

[5] A.L. Viet, R. Jose, M.V. Reddy, B.V.R. Chowdari, S. Rama-krishna, J. Phys. Chem. C, 114, 21795 (2010).

[6] B. Tan, E. Toman, Y. Li, Y. Wu, J. Am. Chem. Soc., 129, 4162 (2007).

[7] M.Y.A. Rahman, M.M. Salleh, I.A. Talib, M. Yahaya, A. Ah-mad, Curr. Appl. Phys., 7, 446 (2007).

[8] L. Miao, P. Jin, K. Kaneko, A. Terai, N. Nabatova-Gabain, S. Tanemura, Appl. Surf. Sci., 212, 255 (2003).

[9] C. C. Hsieh, K. H. Wu, J. Y. Juang, T. M. Uen, J.-Y. Lin, Y. S. Gou, J. Appl. Phys., 92, 2318 (2002).

[10]M.Dj. Blesˇic´, Z.V. S ˇ aponjic´, J.M. Nedeljkovic´, D.P. Us-kokovic, Mater. Lett., 54, 298 (2002).

[11]J. Yu, X. Zhao, Q. Zhao, Thin Solid Films, 379, 7 (2000).

[12]J.-G. Yu, H.-G. Yu, B. Cheng, X.-J. Zhao, J. C. Yu, W.-K. Ho, J. Phys. Chem., B, 107, 13871 (2003).

[13]E. Hosono, S. Fujihara, K. Kakiuchi, H. Imai, J. Am. Chem. Soc., 126, 7790 (2004).

[14]Y. Liu, S. Yang, J. Hong, C. Sun, J. Hazardous Mater., 142, 208 (2007).

[15]D. Reyes-Coronado, G. Rodr´ıguez-Gattorno, M.E. Espinosa-Pesqueira, C. Cab, R. de Coss, G. Oskam, Nanotechnology, 19, 145605 (2008).

[16]L. Roza, A.A. Umar, M.Y.A. Rahman, M.M. Salleh, Adv. Mater. Res., 364, 393 (2012).

[17]A. S. Barnard, L. A. Curtiss, Nano Lett., 5, 1261 (2005).

[18]V. Kandavelu, H.-S. Huang, J.-L. Jian, T.C.-K. Yang, K.-L. Wang, S.-T. Huang, Solar Energy, 83, 574 (2009).

[19]M.Y.A. Rahman, A.A. Umar, L. Roza, M.M. Salleh, Russian J. Electrochem., 50, 1072 (2014).