Development of Potentiometric Lactate Biosensor Based on Composite pH Sensor

Development of Potentiometric Lactate Biosensor Based on Composite pH Sensor

Hilmiye Deniz Ertugrul Uygun Nihat Tinkilic Azade Attar Ibrahim Isildak* 

Ondokuz Mayis University, Faculty of Science and Arts, Department of Chemistry, Kurupelit 55139, Samsun, Turkey

Yildiz Technical University, Faculty of Chemical and Metallurgical Engineering, Department of Bioengineering, Esenler 34210, Istanbul, Turkey

 

Corresponding Author Email: 
isildak@yildiz.edu.tr
Page: 
151-156
|
DOI: 
https://doi.org/10.14447/jnmes.v19i3.313
Received: 
08 March 2016
| |
Accepted: 
05 June 2016
| | Citation
Abstract: 

In this study, a micro-sized lactate sensitive biosensor based on polyvinylchloride, quinhydrone and graphite composite pH sensing platform was developed. Lactate oxidase was immobilized on the composite layer as the biorecognition element. Transformation reaction of lactate to pyruvate and hydrogen peroxide was the basis of this biosensor system. In the reaction, hydrogen peroxide undergoes to give hydronium ions into solution, and the pH sensitive membrane detects the adjunct hydronium ions potentiometrically. The surface of lactate biosensor based composite pH sensing matrice was first examined for electrochemical elucidation by using cyclic voltammetry and electrochemical impedance spectroscopy. A linear response in concentration range from 5x10-5 to 1x10-1 mol/L was obtained with a detec-tion limit of 2x10-5 mol/L. The lactate biosensor developed was successfully applied for highly precise and efficient determination of lactate in food preparations. The biosensor exhibited a fast response time (10 s), had good stability, and had an extended lifetime.

Keywords: 

lactate, lactate oxidase, pH sensitive biosensor, impedance, quinhydrone

1. Introduction
2. Materials and Methods
3. Results and Discussion
  References

[1] A. Choi, J.S. Park, H.I. Jung, Sensors Actuat. B. Chem., 137, 357 (2009).

[2] R. Wang, J. Lin, K. Lassiter, B. Srinivasan, L. Lin, H. Lu, S. Tung, B. Hargis, W. Bottje, L. Berghman, Y..Li, J. Virol. Methods, 178, 52 (2011).

[3] Z.O. Uygun, M.K. Sezginturk, Anal. Chim. Acta, 706, 343 (2011).

[4] H. Yang, Z. Li, X. Wei, R. Huang, H. Qi, Q. Gao, C. Li, C. Zhang, Talanta, 111, 62 (2013).

[5] P. Raghu, T.M. Reddy, K. Reddaiah, B.E.K. Swamy, M. Sreedhar, Food Chem., 142, 188 (2014).

[6] F.W.P. Ribeiro, M.F. Barroso, S. Morais, S. Viswanathan, P.D. Lima-Neto, A.N. Correia, M.B.P.P. Oliveira, C. Delerue-Matos, Bioelectrochem., 95, 7 (2014).

[7] H.E. Indyk, D.C. Wollard, J. Food Comp. Anal., 29, 87 (2013).

[8] G. Wen, Z. Li, M.M.F. Choi, J. Food Engineer., 118, 56 (2013).

[9] I.M. Apetrei, C. Apetrei, Sensors Actuat. B. Chem,. 178, 40 (2013).

[10]O.K. Koo, M. Eggleton, C.A. O’Bryan, P.G. Crandall, Meat Sci., 92, 533 (2012).

[11]A. Tomassini, G. Capuani, M. Delfini, A. Miccheli, Data Hand. Science Technology, 28, 411 (2013).

[12]Z.C. Lin, J.C. Chou, T.P. Sun, S.K. Hsiung, Sensor Lett., 6, 855 (2008).

[13]N. Tinkilic, O. Cubuk, I. Isildak, Anal. Chim. Acta, 452, 29 (2002).

[14]I. Isildak, O. Cubuk, M. Altikatoglu, M. Yolcu, V. Erci, N. Tinkilic, Biochem. Engineer. J., 62, 34 (2012).

[15]R.E. Schmitt, H.R. Molitor, T. Wu, Int. J. Electrochem. Sci., 7, 10835 (2012).

[16]O. Cubuk, M. Altikatoglu, V. Erci, I. Isildak, N. Tinkilic, Sen-sor Lett., 11, 585 (2013).

[17]M. Altikatoglu, E. Karakus, V. Erci, S. Pekyardımcı, I. Isildak, Artif. Cells Nanomed. Biotechnol., 41, 131 (2013).

[18]A.A. Karyakin, Electroanalysis, 13, 813 (2001).

[19]R. Koncki, Crit. Rev. Anal. Chem., 32, 79 (2002).

[20]F. Ricci, G. Palleschi, Biosens. Bioelectron., 21, 389 (2005).

[21]D. Lowinsohn, M. Bertotti, J. Braz. Chem. Soc., 19, 637 (2008).

[22]C. Aquino-Binag, P.J. Pigra, R.N. Lamb, P.W. Alexander, Anal. Chim. Acta, 291, 65 (1994).

[23]W. Tao, Y. Liu, D. Pan, L. Nie, S. Yao, Bioelectrochem., 65, 51 (2004).

[24]A. Lupu, A. Valsesia, F. Bretagnol, P. Colpo, F. Rossi, Sensor. Actuat. B, 127, 606 (2007).