Ethylenediamine Processed Cu2SnS3 Nano Particles via Mild Solution Route

Ethylenediamine Processed Cu2SnS3 Nano Particles via Mild Solution Route

Paul Nesamony Prathiba Jeya Helan Kannusamy Mohanraj* Sethuramachandran Thanikaikarasan* Thaiyan Mahalingam Ganesan Sivakumar P. J. Sebastian*

Department of Physics, Manonmaniam Sundaranar University, Tirunelveli- 627 012, Tamil Nadu, India

Centre for Scientific and Applied Research,School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli – 627 152,Tamil Nadu, India

Department of Electrical and Computer Engineering, Ajou University, Suwon - 443 749, Republic of Korea

Centre for Instrumentation and Service Laboratory, Department of Physics, Annamalai University, Annamalai Nagar- 608 002, Tamil Nadu, India

Instituto de Energias Renovables- UNAM 62580,Temixco, Morelos,Mexico

Corresponding Author Email: 
kmohanraj.msu@gmail.com, s_thanikai@rediffmail.com, sjp@ier.unam.mx
Page: 
1-5
|
DOI: 
https://doi.org/10.14447/jnmes.v19i1.339
Received: 
10 November 2015
| |
Accepted: 
25 November 2015
| | Citation

OPEN ACCESS

Abstract: 

Copper tin sulphide nanoparticles have been prepared by solution growth technique at various ethylenediamine concentrations. Prepared samples have been characterized using x-ray diffraction, fourier transform infrared, Raman and scanning electron microscopy techniques. x-ray diffraction results revealed that the prepared samples are nanocrystalline in nature with tetragonal structure. Fourier transform infrared spectroscopy analysis results showed the presence of Cu-O, Sn-O and Sn-S vibrations in the wavenumber range between 450 and 620 cm-1. Vibrational symmetry of prepared samples have been analyzed using Raman spectroscopy. Scanning electron microscopy analysis indicated the formation of flower like nanocrystals for samples prepared at various Ethylenediamine concentrations.

Keywords: 

Cu2SnS3, nanoparticles, solvothermal method, ethylenediamine

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
5. Acknowledgment
  References

[1] D. Tiwari, T.K. Chaudhuri, AIP Conference Proceedings, 1349, 1295 (2011).

[2] Q. Chen, D. Ma, International Journal of Photonenergy, 593420, 1 (2013).

[3] C. Wu, Z. Hu, C. Wang, H. Sheng, J. Yang, Y. Xie, Applied Physics Letters, 91, 1 (2007).

[4] D.M. Berg, R. Djemour, L. Gutay, G. Zoppi, S. Siebentritt, P.J. Dale, Thin Solid Films, 520, 6291 (2012).

[5] M. Adelifard, M.B. Mohagheghi, H. Eshghi, Physica Scripta, 85, 035603 (2012).

[6] D. Wu, C.R. Knowles, L.Y. Luke, Chang, Mineralogical Magetism, 50, 323 (1986).

[7] S. Dias, M. Banavoth, S.B. Krupanidhi, AIP Conference Proceedings, 1536, 525 (2013).

[8] S. Blob, M. Jansen, Z Naturforsch, 58b, 1075 (2003).

[9] Q. Li, Y. Ding, X. Liu, Y. Qian, Mater. Res. Bull., 36, 2649 (2001).

[10]X. Liang, Q. Cai, W. Xiang, Z. Chen, J. Zhong, Y. Wang, M. Shao, Z. Li, Journal of Materials Science Technology, 29, 231 (2013).

[11]Y. Xiong, Y. Xie, G. Du, H. Su, Inorganic Chemisty, 41, 2953 (2002).

[12]Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003 PDF.89-4714, Pennsylvenia, USA.

[13]Joined Council for Powder Diffracted System International Centre for Diffraction Data 2003, PDF.72-0617, Pennslyvenia, USA.

[14]J. Koike, K. Chino, N. Aihara, H. Araki, R. Nakamura, K. Jimbo, H. Katagiri, Japan Journal of Applied Physics, 51, 10NC34 (2012).

[15]D.M. Berg, Djemour, L Gutay, S. Siebentritt, P.J. Dale, X. Fontane, V. Izquierdo-Roca, A. Perez-Rodriguez, Applied Physics Letters, 100, 1 (2012).

[16]N.S. Goncalves, J. A. Carvalho, Z. M. Lima, J. M. Sasaki, Material Letters 72, 36 (2012).

[17]T. Petrov, I. Markova-Deneva, O. Chauvet, R. Nikolov, I.J. Denev, Chemical Technology. Metallurgy, 47, 197 (2012).

[18]B. Stuart, Infrared Spectroscopy: Fundamentals and Applications, 46 (2004).

[19]P. Zhao, S. Cheng, Advanced Materails Science and Engineering, 726080, 1 (2013).

[20]K.K. Verma, Seema, S. Chhabra, International Journal of Chemical Sciences, 6, 59 (2008).

[21]Z. Abdullaeva, E. Omurzak, T. Mashimo, Engineering and Technology, 7, 06 (2013).

[22]W.T. Yao, S-H. Yu, Y. Zhou, J. Jiang, Q-S. Wu, L. Zhang, J. Jiang, Journal of Physical Chemistry B, 109, 14011 (2005).

[23]J. Han, Y. Zhou, Y. Tian, Z. Huang, X. Wang, J. Zhong, Z. Xia, B. Yang, H. Song, J. Tang, Front. Optoelectron., 1-3 (2011).

[24]P.A. Fernandes, P.M.P. Salome, A.F. Da Cunha, Journal of Physics D: Applied Physics, 21, 215403 (2010).

[25]A. Mercy, S.R. Selvaraj, M.B. Boaz, A. Anandhi, R. Kangadurai, Indian Journal of Pure Applied Physics, 51, 448 (2013).