Influence of TiO2 as Filler on the Discharge Characteristics of a Proton Battery

Influence of TiO2 as Filler on the Discharge Characteristics of a Proton Battery

C. Ambika G. HirankumarS. Thanikaikarasan K. K. Lee E. Valenzuela P .J. Sebastian

Center for Scientific and Applied Research, School of Basic Engineering and Sciences, PSN College of Engineering and Technology, Tirunelveli, 627152, Tamilnadu, India

Department of Electrical and Computer Engineering, Ajou University, Suwon, 443 749, Korea

Facultad de Ingeniería, Universidad Autónoma de Baja California, Boulevard Benito Juárez S/N, Mexicali, B. C., México. C.P. 21900

Instituto de Energias Renovables, UNAM, 62580, Temixco, Morelos, Mexico

Corresponding Author Email: 
hiran.gp@gmail.com, sjp@ier.unam.mx
Page: 
219-223
|
DOI: 
https://doi.org/10.14447/jnmes.v18i4.351
Received: 
31 August 2015
|
Accepted: 
10 September 2015
|
Published: 
20 November 2015
| Citation
Abstract: 

Different concentrations of TiO2 dispersed nano-composite proton conducting polymer electrolyte membranes were prepared using solution casting technique. Fourier Transform Infrared Spectroscopic analysis was carried out to determine the vibrational investigations about the prepared membranes. Variation of conductivity due to the incorporation of TiO2 in polymer blend electrolyte was analyzed using Electrochemical Impedance Spectroscopy and the value of maximum conductivity is 2.8×10-5 Scm-1 for 1mol% of TiO2 dispersed in polymer electrolytes. Wagner polarization technique has been used to determine the value of charge transport number of the composite polymer electrolytes. The electrochemical stability window of the nano-composite polymer electrolyte was analyzed using Linear Sweep Voltammetry. Fabrication of Proton battery is carried out with configuration of Zn+ZnSO4.7H2O+AC ǁ Polymer electrolyte ǁ MnO2+AC. Discharge characteristics were investigated for polymer blend electrolytes and 1mol% TiO2 dispersed nano-composite polymer electrolytes at constant current drain of 10μA. There is evidence of enhanced performance for proton battery which was constructed using 1mol% TiO2 dispersed nano-composite polymer electrolytes compared to the blend polymer electrolytes.

Keywords: 

Proton battery, TiO2, polymer electrolyte, nano-composite

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
  References

[1] J.R. Mac callum, C.A. Vincent (Eds.), Polymer electrolyte re-views, Elsevier, Amsterdam, 1987.

[2] J.R. Owen, A.L. Lasker, S. Chandra (Eds.), Superionic solids and solid electrolytes-Recent trends, Academic press, New York, 1989.

[3] M.B. Armand, Annual Review of Materials Science, 16, 245 (1986).

[4] M.A. Ratner, D.F. Shriver, Chemical Reviews, 88, 109 (1988).

[5] S. Ramesh, Chiam- Wen Lie, Iranian Polymer Journal, 21, 273 (2012).

[6] M. Sivakumar, R. Subadevi, S. Rajendran, N-L. Wu, J-Y. Lee, Materials Chemistry and Physics, 97, 330 (2006).

[7] K.S. Kum, M.K. Song, Y.T. Kim, H.S. Kim, B.W. Cho, H.W. Rhee, Electrochim. Acta, 50, 285 (2004).

[8] R. Baskaran, S. Selvasekarapandian, G. Hirankumar, M.S. Bhu-vaneswari, Journal of Power Sources, 134, 235 (2004).

[9] Rehana Ashrafi , Dinesh K. Sahu, Priyanka Kesharwani, Manju Ganjir, R.C. Agrawal, Journal of Non-Crystalline Solids, 39, 191 (2014).

[10]Z. Ahmad, N.A. Al-Awadi, Al-Sagheer. Polymer Degradation and Stability, 92,1025 (2007).

[11]C. Ambika, G. Hirankumar, S. Karthickprabhu, R.S. Daries Bella, International Conference on Advanced Polymeric Mate-rials (ICAPM-2013), Proceedings, pp 120, 2013.

[12]C. Ambika, G. Hirankumar, S. Karthickprabhu, R.S. Daries Bella, International Journal of Chem Tech Research, 6, 1690 (2014).

[13]S.C. Baker, D.P. Kelly, J.C. Murrell, Nature, 350, 627 (1991).

[14]M. Ravi, K. Kiran Kumar, V. Madhu Mohan, V.V.R. Narasim-ha Rao, Polymer Testing, 33, 152 (2014).

[15]Shahzada Ahmad, T.K. Saxena, Sharif Ahmad, S.A. Ag-nihotry, Journal of Power Sources, 159, 205 (2006).

[16]C.W. Lin, C.L. Hung, M. Venkateswarlu, B.J. Hwang, Journal of Power Sources, 146, 397 (2005).

[17]Katerina E. Aifantis, Stephen A. Hackney, R. Vasantkumar, High energy density Lithium batteries: Materials, Engineering, Applications, John Wiley and Sons, 30 march, 2010.

[18]V.D. Maiorov, G.I. Voloshenko, and N.B. Librovich, Russian Journal of Physical Chemistry B, 5, 271 (2011).

[19]Shahzada Ahmad, T.K. Saxena, Sharif Ahmad, S.A. Ag-nihotry, Journal of Power sources, 59, 205 (2006).

[20]A.K. Joncher, Nature, 267, 673 (1977).

[21]K. Funke, B. Roling, M. Lange, Solid State Ionics, 105, 195 (1998).

[22]J.B. Wagner, C. Wagner, Journal of chemistry and Physics, 26, 1957 (1957).

[23] Rana Pradap, B. Singh, S. Chandra, Journal of Power Sources, 161, 702 (2006).

[24] M.F. Shukur, R. Ithnin, H.A. Illias, M.F.Z. Kadir, Optical Materials, 35, 1834 (2013).