NOx Conversion of Porous LSF15-CGO10 Cell Stacks

NOx Conversion of Porous LSF15-CGO10 Cell Stacks

A. Z. Friedberg K. Kammer Hansen

Department of Energy Conversion and Storage, Technical University of Denmark Frederiksborgvej 399, DK-4000, Roskilde, Denmark

Corresponding Author Email: 
kkha@dtu.dk
Page: 
111-120
|
DOI: 
https://doi.org/10.14447/jnmes.v18i2.378
Received: 
27 November 2014
|
Accepted: 
25 February 2015
|
Published: 
20 April 2015
| Citation
Abstract: 

A porous electrochemical reactor, made of La0.85Sr0.15FeO3 as electrode and Ce0.9Gd0.1O1.95 as electrolyte, was studied for the electrochemical reduction of NO with Propene. In order to enhance the effect of polarization, the reactor was impregnated with Ce0.9Gd0.1O1.95, CeO2 or Ce0.8Pr0.2O2-d nanoparticles. The HC-SCR on the cells was increased on the impregnated cells, but no electrochemical enhancement of this was observed. The applied overpotential on the impregnated cells changed the oxidation reaction of NO into NO2 which is considered an intermediate in the NO reduction to nitrogen.

1. Introduction
2. Experimental
3. Results
4. Discussion
5. Conclusion
  References

[1] N. Imanaka and T. Masui, Appl. Catal. A-Gen., 431, 1 (2012).

[2] T. Huang, CY. Wu, S. Hsu and C. Wu, Appl. Catal. B-Environ., 110, 164 (2011).

[3] M. Iwamoto and H. Hamada, Catal. Today, 10, 57 (1991).

[4] T. Harada, S. Kagawa and Y. Teraoka, Appl. Surf. Sci., 121-122, 505 (1997).

[5] R. Zhang, A. Villanueva, H. Alamdari and S. Kaliaguine, Appl. Catal. A-Gen., 307(1), 85 (2006).

[6] K.K. Hansen, E.M. Skou, H. Christensen and T. Turek, J. Catal., 199(1), 132 (2001).

[7] S. Pancharatnam, R.A. Huggins and D.M. Mason, J. Electro-chem. Soc., 122(7), 869 (1975).

[8] X. Tang, X. Xu, H. Yi, C. Chen and C. Wang, Sci. World J., 2013 (2013).

[9] S. Bredikhin, K. Hamamoto, Y. Fujishiro and M. Awano, Ion-ics, 15 (3), 285 (2009).

[10] K.K. Hansen, Appl. Catal. B, 58(1-2), 33 (2005).

[11] K.K. Hansen, Appl. Catal. B Environ., 100(3-4), 427 (2010).

[12] R.M.L. Werchmeister, K.K. Hansen and M. Mogensen, J. Solid State Electrochem., 16(2), 703 (2012).

[13] K.K. Hansen, E.M. Skou and H. Christensen, J. Electrochem. Soc., 147(5), 2007 (2000).

[14] K.K. Hansen, Electrochem. Comm., 9(11), 2721 (2007).

[15] K.K. Hansen, Electrocatal., 5(3), 256 (2014).

[16] K.K. Hansen and E.M. Skou, Solid State Ionics, 176(9-10), 915 (2005).

[17] R.M.L. Werchmeister, K.K. Hansen and M. Mogensen, Maters. Res. Bull, 45(11), 1554 (2010).

[18] R.M.L. Werchmeister, K.K. Hansen and M. Mogensen, J. Elec-trochem. Soc., 157(12), 107 (2010).

[19] R.M.L. Werchmeister, K.K. Hansen and M. Mogensen, J. Elec-trochem. Soc., 157(5), 35 (2010).

[20] K.K. Hansen and M. Mogensen, ECS Trans., 13(26), 153 (2008).

[21] D. Ippolito, K.B. Andersen and K. Hansen, J. Electrochem. Soc., 159(6), 57 (2012).

[22] D. Ippolito and K.K. Hansen, J. Solid State Electr., 17(3), 895 (2013).

[23] K.B. Andersen, F.B. Nygaard, Z. He, M. Menon and K.K. Hansen, Ceram. Int., 37(3), 903 (2011).

[24] Elechemea analytical. http://www.elchemea.com, 2012. Ace-ssed : 2014-07-08.

[25] C.G. Vayenas, S. Brosda and C. Pliangos, J. Catal., 203(2), 329 (2001).

[26] B. Beguin, F. Gaillard, M. Primet, P. Vernoux, L. Bultel, M. Henault, C. Roux and E. Siebert, Ionics, 8(1-2), 128 (2002).

[27] F.C. Buciuman, E. Joubert, J. Barbier and J.C. Menezo, Appl. Catal. B-Environ., 35(2), 149 (2001).

[28] M.J. Jorgensen and M. Mogensen, J. Electrochem. Soc., 148(5), A433 (2001).

[29] D. Ippolito and K.K. Hansen, J. Electrochem. Soc., 161(3), F323 (2014).

[30] S. Primdahl and M. Mogensen, J. Electrochem. Soc., 145(7), 2431 (1998).

[31] M.B. Mogensen, J. Electrochem. Soc, 146(8), 2827 (1999).