Capacitance Properties of Electrodeposited Polyaniline Films on Stainless Steel Substrate

Capacitance Properties of Electrodeposited Polyaniline Films on Stainless Steel Substrate

A.A. Al-Owais I.S. El-Hallag M.A. Ghanem E.H. El-Mossalamy 

Chemistry Department, Faculty of Science, King Saud University, Riyadh ,SA

Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt

Chemistry Department, Faculty of Science, Benha University, Benha, Egypt

July 25, 2014
December 15, 2014
February 13, 2015
| Citation



Polyaniline (PANI) thin films were successfully synthesized from a mixed solution of 1M aniline and two different concentration solutions of H2SO4 on a stainless steel substrate. The capacitance properties of polyaniline (PANI) films, have been determined and examined in the selected media of two different concentrations of H2SOacid using cyclic volammetry technique. Cyclic voltammetric measurements have shown that PANI films grown by cycling the potential between -0.2V and 1 V in 1M H2SO4 and 2M H2SO4 on SS electrode. The electrochemical characterization of the electrode was carried out by means of cyclic voltammetry. The results show that polyaniline has a high specific capacitance of 702.1 F.g-1 and 810.5 F.g-1 at 10 mV s-1 in 1M H2SO4 and 2M H2SO4 respectively. This indicates that the promising feasibility of the polyaniline used as an electrochemical capacitor material in the sulphuric acid solutions.


Polyaniline; Electrodeposition; cyclic voltammetry; Capacitance properties

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgement

This project was supported by King Saud University, Deanship of Scientific Research, College of Science Research Center.


[1] B.E. Conway, J. Electrochem. Soc., 138, 1539 (1991).

[2] W.C. Chen, T.C. Wen, J. Power Sources, 117, 273 (2003).

[3] R. Kotz, M. Carlen, Electrochim. Acta, 45, 2483 (2000).

[4] E. Frackowiak, F. Beguin, Carbon, 40, 1775 (2002).

[5] A.I. Inamdar, Y.S. Kim, S.M. Pawar, J.H. Kim, H. Im, H. Kim, J. Power Sources, 196, 2393 (2011).

[6] C.C. Wang, C.C. Hu, Electrochim. Acta, 50, 2573 (2005).

[7] M. Nakayama, T. Kanaya, R. Inoue, Electrochem. Commun., 9, 1154 (2007).

[8] J.W. Lang, L.B. Kong, W.J. Wu, Y.C. Luo, L. Kang, Chem. Commun., 35, 4213 (2008).

[9] Y.G. Wang, H.Q. Li, Y.Y. Xia, Adv. Mater., 18, 2619 (2006).

[10]S.R. Silvakumar, W.J. Kim, J.A. Choi, D.R. Mac-Farlance, M. Forsyth, D.W. Kim, J. Power Sources 171, 1062 (2007).

[11]P. Sivaraman, R.K. Kushwaha, K. Shashidhara, V.R. Hande, A.P. Thakur, A.B. Samui, M.M. Khandpekar, Electrochim. Acta, 55, 2451 (2010).

[12]S.R. Sivakkumar, R. Saraswathi, J. Power Sources, 137, 322 (2004).

[13]K.S. Ryu, K.M. Kim, N.G. Park, Y.J. Park, S.H. Chang, J. Power Sources, 103, 305 (2002).

[14]P. J. Kulesza, M. Skunik, B. Baranowska, K. Miecznikowski, M. Chojak, K. Karnicka, E. Frackowiak, F. Beguin, A. Kuhn, M.H. Delville, B. Starobrzynska, A. Ernst, Electrochim. Acta, 51, 2373 (2006).

[15]A.M.P. Hussain, A. Kumar, F. Singh, D.K. Avasthi, J. Phys. D: Appl. Phys., 39, 750 (2006).

[16]A.M.P. Hussain, A. Kumar, Eur. Phys. J. Appl. Phys., 36, 105 (2006).

[17]S.R. Sivakkumar, W.J. Kim, J.A. Choi, D.R. Mac-Farlane, M. Forsyth, D.W. Kim, J. Power Sources, 171, 1062 (2007).

[18]T.C. Girija, M.V. Sangaranarayanan, J. Power Sources, 156, 705 (2006).

[19]B.C. Kim, J.S. Kwon, J.M. Ko, J.H. Park, C.O. Too, G.G. Wallace, Synth. Met., 160, 94 (2010).

[20]J. Liu, M. Zhou, L.Z. Fan, P. Li, X. Qu, Electrochim. Acta, 55, 5819 (2010).