Preparation and Characterization of Ultraviolet-cured Polymer Electrolyte Poly(glycidyl methacrylate-co-methyl methacrylate)

Preparation and Characterization of Ultraviolet-cured Polymer Electrolyte Poly(glycidyl methacrylate-co-methyl methacrylate)

M. Imperiyka A. Ahmad S. A. Hanifa M. Y.A. Rahman* N. S. Mohamed

1School of Chemical Sciences and Food Technology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Polymer Research Center, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor, Malaysia

Center of Foundation Studies in Science, University of Malaya, 50603, Kuala Lumpur, Malaysia

Faculty of Art and Science, Kufra Campus, University of Benghazi, PO Box 1308, Bneghazi, Libya

Corresponding Author Email: 
mohd.yusri@ukm.edu.my, azizan@ukm.edu.my
Page: 
213-217
|
DOI: 
https://doi.org/10.14447/jnmes.v17i4.392
Received: 
6 February 2014
|
Accepted: 
10 April 2014
|
Published: 
11 July 2014
| Citation
Abstract: 

Effect of lithium triflate (LiTf) concentration on the properties of poly (glycidyl methacrylate-co-methyl methacrylate) P(GMAco-MMA)-based solid polymer electrolyte was investigated. The copolymer of (GMA-co-MMA) was synthesized by photopolymerization method. P(GMA–MMA) was fixed at the ratio of 90:10 based on the conductivity result of the electrolyte film. The electrolyte samples were characterized using impedance spectroscopy (EIS), cyclic voltammetry (CV) and thermogravimetric analysis (TGA). The room temperature conductivity was improved about six orders upon the addition of 30 wt. % LiTf salt into the polymer host. The highest room temperature conductivity was 1.4×10-6 S cm-1 at 30 wt. % LiTf. The highest conductivity of 1.25×10-4 S cm-1 was achieved at 393 K. The polymer electrolyte system exhibits Arrhenius-like behavior with the pre-exponential factor of 1.25×10-4 S cm-1 and activation energy of 0.39 eV. The electrolyte showed electrochemical stability window up to 3 V. The thermal stability increases with the salt concentration. The above results indicate that the electrolyte has potential for lithium ion battery application.

Keywords: 

glycidyl methacrylate (GMA), methyl methacrylate (MMA), ionic conductivity, solid polymer electrolyte, lithium triflate

1. Introduction
2. Materials and Methods
3. Result and Discussion
4. Concllsions
5. Acknowledgments

The authors are thankful to the Universiti Kebangsaan Malaysia for allowing this research to be carried out in various laboratories. This work was supported by the UKM grant UKM-DLP-2012-021.

  References

[1] M.B. Armand, J.M. Chabagno, M. Duclot, In Fast on Transport in Solids (eds), P. Vashista, J.N. Mundy and G.K. Shenoy (New York: Elsevier) 131, 1979.

[2] M. Armand, Solid State Ionics, 69, 309 (1994).

[3] A.M.M. Ali, M.Z.A. Yahya, H. Bahron, R.H.Y. Subban, Ionics, 12, 303 (2006).

[4] J.M. Tarascon, M. Armand, Nature, 414, 359 (2001).

[5] K. Murata, S. Izuchi, Y.Y. Youetsu, Electrochimica Acta, 45, 1501 (2000).

[6] J. Xu, H.R. Thomas, R.W. Francis, Journal of Power Sources, 177, 512 (2008).

[7] M.A. Stephan, K.S. Nahm, Polymer, 47, 5952 (2006).

[8] S. Anandan, S. Pitchumani, B. Muthuraaman, P. Maruthamuthu, Solar Energy Materials and Solar Cells, 90, 1715 (2006).

[9] S.A.M. Noor, A. Ahmad, M.Y.A. Rahman, I.A. Talib, Journal of Applied Polymer Science, 113, 855 (2009).

[10] M.Y.A. Rahman, A. Ahmad, L.H.C. Ismail, M.M. Salleh, Journal of Applied Polymer Science, 115, 2144 (2009).

[11] S.A.M. Noor, A. Ahmad, M.Y.A. Rahman, Current Trends in Polymer Science, 13, 17 (2009).

[12] M.Y.A. Rahman, A. Ahmad, T.K. Lee, Y. Farina, H.M. Dahlan, Journal of Applied Polymer Sciences, 124, 2227 (2012).

[13] A. Ahmad, M.Y.A. Rahman, M.S. Su’ait, Journal of Applied Polymer Sciences, 124, 4222 (2012).

[14] T.K. Lee, A. Ahmad, Y. Farina, H.M. Dahlan, M.Y.A. Rahman, Journal of Applied Polymer Sciences, 126, E159 (2012).

[15] D.W. Kang, D.W. Kim, S.K. Jo, H.J. Sohn, Journal of Power Sources, 112, 1 (2002).

[16] J. Fuller, A.C. Bred, T.R. Carlin, Journal of Electroanalytical Chemistry, 459, 29 (1998).

[17] Y. Wang, X. Ma, Q. Zhang, N. Tian, Journal of Membrane Science, 349, 279 (2010).

[18] S.A. Hanifah, L.Y. Heng, M. Ahmad, Analytical Science, 25, 779 (2009).

[19] M. Imperiyka, M. Ahmad, S.A. Hanifah, M.Y.A. Rahman, Advanced Science Letters, 19, 194 (2010).

[20] M. Imperiyka, A. Ahmad, S.A. Hanifah, M.Y.A. Rahman, Advanced Materials Research, 626, 454 (2012).

[21] H.M.S. Nasirtabrizi, Mohebalizadeh, P.A. Jadid, Iranian Polymer Journal, 20, 579 (2011).

[22] S.I. Kaya, Z. I˙lterb, S.D. Enol, Polymer, 43, 6455 (2002).

[23] N. Ataollahi, A. Ahmad, H. Hamzah, M.Y.A. Rahman, N.S. Mohamed, International Journal of Electrochemical Science, 7, 6693 (2012).

[24] F. Latif, M. Aziz, N. Katun, M.M. Ali, M.Z. Yahya, Journal of Power Sources, 159, 1401 (2006).

[25] K.B. Ahmad, M.D. Isa, Z. Osman, Sains Malaysiana, 40, 691 (2011).

[26] F. Wu, T. Feng, Y. Bai, C. Wu, L. Ye, Z. Feng, Solid State Ionics, 180, 677 (2009).

[27] P. Ragavendran, A. Kalyani, S. Veluchamy, R., Banumathi, T. Thirunakaran, Journal Benedict Portugaliae Electrochimica Acta, 22, 149 (2004).

[28] D. Kumar, S.A. Hashmi, Journal of Power Sources, 195, 5101 (2010).