Synthesis and Performance of Sulfated Zirconia Catalyst in Esterification of Oleic Acid

Synthesis and Performance of Sulfated Zirconia Catalyst in Esterification of Oleic Acid

R. Berrones K. Camas Y. Pérez E. Ramírez A. Pérez D. Eapen P.J. Sebastian*

Universidad Politécnica de Chiapas, Eduardo J. Selvas, 29082, Tuxtla Gutiérrez, Chiapas, México

Centro de Investigación en Materiales Avanzados S.C., Ave. Miguel de Cervantes 120, 31109, Chihuahua, México

Instituto de Energías Renovables – UNAM, 62580, Temixco, Morelos, México

Instituto de Biotecnologia-UNAM, Av. Universidad 2001, Cuernavaca, 62210, Morelos, Mexico

Corresponding Author Email: 
sjp@ier.unam.mx
Page: 
099-104
|
DOI: 
https://doi.org/10.14447/jnmes.v17i2.430
Received: 
September 17, 2013
|
Accepted: 
November 15, 2013
|
Published: 
April 01, 2014
| Citation
Abstract: 

In this work, the performance of sulfated zirconia catalyst used in the synthesis of biodiesel by esterification of oleic acid was studied. For catalyst preparation the zirconium dioxide (ZrO) by Aldrich was used as precursor. The sulfated zirconia obtained was calcined for 3 hours at different temperatures (200, 400, 600 and 700 °C) in an oxygen atmosphere. Each of the calcination conditions generated a sample of catalyst, which was used in the esterification reaction. The esterification reaction was carried out using reagents such as oleic acid and methanol at a molar ratio 1:20. The sulfated zirconia catalyst was used in the reaction in various proportions by weight relative to the weight of oleic acid (0.5, 1.0, 3.0 and 5%). The analysis of methyl ester conversion was performed by gas chromatography and mass spectrometry (CGMS) and the percentage area of the characteristic peaks as methyl oleate was quantified. A characterization of sulfated zirconia was also performed using scanning electron microscopy (SEM) and X-ray diffraction (XRD). Finally, the catalyst performance was studied in the reduction of the acid index (AI) and the conversion of free fatty acids of oleic acid and compared to other commonly used catalyst for this purpose, which is concentrated sulfuric acid (H2SO4).

Keywords: 

sulfated zirconia, oleic acid, biodiesel, esterification, transesterification

1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
5. Acknowledgement

The authors acknowledge the economic support from National Council for Science and Technology of Mexico (CONACYT).

  References

[1] R. Alcantara, J. Amores, L. Canoira, E. Fidalgo, M.J. Franco, A. Navarro, Biomass and Bioenergy, 18, 515 (2000).

[2] Ghassan M. Tashtoush, Mohamad I. Al-Widyan, Mohammad M. Al-Jarrah, Energy Conversion and Management, 45, 2697 (2004).

[3] Gerhard Knothe, Jon Van Gerpen, eds., The Biodiesel Handbook, AOCS Press, Illinois, USA (2005).

[4] L.C. Meher, D. VidyaSagar, S.N. Naik, Renewable and Sustainable Energy Reviews, 10, 248 (2006).

[5] Bryan R. Moser, Dev. Biol. Plant, 45, 229 (2009).

[6] Mustafa Balat, HavvaBalat, Applied Energy, 87, 1815 (2010).

[7] Ayhan Demirbas, Energy Conversion and Management, 49, 125 (2008).

[8] Ejaz M. Shahid, Younis Jamal, Renewable and Sustainable Energy Reviews, 15, 4732 (2011).

[9] Tianwei Tan, Kaili Nie, Fang Wang, Applied Biochemistry and Biotechnology, 128, 109 (2006).

[10] Nadir Dizge, Bülent Keskinler, Biomassand Bioenergy, 32, 1274 (2008).

[11] Yogesh C. Sharma, Bhaskar Singh, John Korstad, Fuel, 90, 1309 (2011).

[12] Ayhan Demirbas, Energy Conversion and Management, 44, 2093 (2003).

[13] Huayang He, Shiyao Sun, Tao Wang, Shenlin Zhu, J Amer Oil Chem Soc, 84, 399 (2007).

[14] Ayhan Demirbas, Biomass and Bioenergy, 33, 113 (2009).

[15] Karne de Boer, Parisa A. Bahri, Biomass and Bioenergy, 35, 983 (2011).

[16] Surbhi Semwal, Ajay K. Arora, Rajendra P. Badoni, Deepak K. Tuli, Bioresource Technology, 102, 2151 (2011).

[17] Jon Van Gerpen, Fuel Processing Technology, 86, 1097 (2005).

[18] S. Zheng, M. Kates, M.A. Dube, D.D. McLean, Biomass and Bioenergy, 30, 267 (2006).

[19] Alok Kumar Tiwari, Akhilesh Kumar, Hifjur Raheman, Biomass and Bioenergy, 31, 569 (2007).

[20] Abebe K. Endalew, Yohannes Kiros, Rolando Zanzi, Biomass and bioenergy, 35, 3787 (2011) .

[21] C.X. Ciao, Z. Gao, Materials Chemistry and Physics, 50, 15 (1997).

[22] Jong Rack Sohn, Tae-Dong Kwon, Sang-Bock Kim, Bull. Korean Chem. Soc., 22, 1309 (2001).

[23] A.A. Refaat, Int. J. Environ. Sci. Tech., 8, 203 (2011).

[24] Satoshi Furuta, Hiromi Matsuhashi, Kazushi Arata, Biomass and Bioenergy, 30, 870 (2006).

[25] Dussadee Rattanaphra, Adam P. Harvey, Anusith Thanapimmetha, Penjit Srinophakun, Renewable Energy, 36, 2679 (2011).

[26] H. Muthu, V. SathyaSelvabala, T.K. Varathachary, D. KiruphaSelvaraj, J. Nandagopal, S. Subramanian, Brazilian Journal of Chemical Engineering, 27, 601 (2010).

[27] Kian Fei Yee, Jeffrey C.S. Wu, Keat Teong Lee, Biomass and bioenergy, 35, 1739 (2011).

[28] Jibrail Kansedo, Keat Teong Lee, Biomass and bioenergy, 40, 96 (2012).

[29] Jaturong Jitputti, Boonyarach Kitiyanan, Kunchana Bunyakiat, Pramoch Rangsunvigit, Peesamai Jenvanitpanjakul, As. J. Energy Env., 7, 423 (2006).

[30] J.M. Marchetti, A.F. Errazu, Biomass and bioenergy, 32, 892 (2008).

[31] Yong Shiyi Ou, Pengzhan Liu, Zhisen Zhang, Energy Conversion and Management, 48, 184 (2007).

[32] Wan Nor Nadyaini Wan Omar, Nor Aishah Saidina Amin, Fuel Processing Technology, 92, 2397 (2011).