Effects of Palladium Doping on the Structure and Electrochemical Properties of LiFePO4/C Prepared using the Sol-gel Method

Effects of Palladium Doping on the Structure and Electrochemical Properties of LiFePO4/C Prepared using the Sol-gel Method

M. Talebi-Esfandarani O. Savadogo*

Laboratory of New Materials for Electrochemistry and Energy, École Polytechnque de Montréal, C.P. 6079, Succ. Centre Ville, Montréal, QC, Canada, H3C 3A7

Corresponding Author Email: 
November 21, 2013
January 24, 2014
May 09, 20
| Citation

LiFePO4/C, LiFe0.98Pd0.02PO4/C, and LiFe0.96Pd0.04PO4/C composite cathode materials were synthesized using the sol-gel method. The effect of palladium on the structure and electrochemical properties of LiFePO4/C have been investigated by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), scanning electron microscopy (SEM), surface area measurement (BET), charge/discharge testing, and cyclic voltammetry (CV). The results indicate that palladium doping facilitates the formation of impurities, like Li3PO4. Also, the lattice parameters of the LiFePO4 structure decrease in size as the palladium content increases. In addition, the particles become larger and agglomerated by palladium incorporation. The electrochemical results show that palladium doping decreases the electrochemical performance of LiFePO4/C, owing to shrinking lattice parameters and the difficulty of achieving the diffusion of lithium ions into the structure during the intercalation/de-intercalation process. These results suggest that palladium doping by sol-gel method changes significantly the LiFePO4 structure which may impact it performances as cathode for the lithium ion battery applications.


LiFePO4/C, sol-gel method, palladium doping, lithium ion diffusion.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, Journal of The Electrochemical Society, 144, 1188 (1997).

[2] A. Yamada, S.C. Chung, K. Hinokuma, Journal of The Electrochemical Society, 148, A224 (2001).

[3] Z.-R. Chang, H.-J. Lv, H.-W. Tang, H.-J. Li, X.-Z. Yuan, H. Wang, Electrochimica Acta, 54, 4595 (2009).

[4] S. Franger, F. Le Cras, C. Bourbon, H. Rouault, Electrochemical and Solid-State Letters, 5, A231 (2002).

[5] Y.-N. Xu, S.-Y. Chung, J.T. Bloking, Y.-M. Chiang, W.Y. Ching, Electrochemical and Solid-State Letters, 7, A131 (2004).

[6] A. Kuwahara, S. Suzuki, M. Miyayama, Journal of Electroceramics, 24, 69 (2010).

[7] D.-H. Kim, J. Kim, Electrochemical and Solid-State Letters, 9, A439 (2006).

[8] N. Ravet, Y. Chouinard, J.F. Magnan, S. Besner, M. Gauthier, M. Armand, Journal of Power Sources, 97, 503 (2001).

[9] X. Zhou, F. Wang, Y. Zhu, Z. Liu, Journal of Materials Chemistry, 21, 3353 (2011).

[10] C.M. Doherty, R.A. Caruso, C.J. Drummond, Energy & Environmental Science, 3, 813 (2010).

[11] Z.-R. Chang, H.-J. Lv, H. Tang, X.-Z. Yuan, H. Wang, Journal of Alloys and Compounds, 501, 14 (2010).

[12] M. Wagemaker, B.L. Ellis, D. Lützenkirchen-Hecht, F.M. Mulder, L.F. Nazar, Chemistry of Materials, 20, 6313 (2008).

[13] W.L. Liu, J.P. Tu, Y.Q. Qiao, J.P. Zhou, S.J. Shi, X.L. Wang, C.D. Gu, Journal of Power Sources, 196, 7728 (2011).

[14] J. Ma, B. Li, H. Du, C. Xu, F. Kang, Journal of Solid State Electrochemistry, 16, 1 (2012).

[15] D. Arumugam, G. Paruthimal Kalaignan, P. Manisankar, Journal of Solid State Electrochemistry, 13, 301 (2009).

[16] X. Ou, G. Liang, L. Wang, S. Xu, X. Zhao, Journal of Power Sources, 184, 543 (2008).

[17] M.-R. Yang, W.-H. Ke, Journal of The Electrochemical Society, 155, A729 (2008).

[18] G.X. Wang, S. Bewlay, S.A. Needham, H.K. Liu, R.S. Liu, V.A. Drozd, J.-F. Lee, J.M. Chen, Journal of The Electrochemical Society, 153, A25 (2006).

[19] H. Liu, C. Li, Q. Cao, Y.P. Wu, R. Holze, Journal of Solid State Electrochemistry, 12, 1017 (2008).

[20] W.-J. Zhang, Journal of The Electrochemical Society, 157, A1040 (2010).

[21] D. Morgan, A. Van der Ven, G. Ceder, Electrochemical and Solid-State Letters, 7, A30 (2004).

[22] C. Ouyang, S. Shi, Z. Wang, X. Huang, L. Chen, Physical Review B, 69, 104303 (2004).

[23] M.S. Islam, D.J. Driscoll, C.A.J. Fisher, P.R. Slater, Chemistry of Materials, 17, 5085 (2005).

[24] S. Shi, L. Liu, C. Ouyang, D.-s. Wang, Z. Wang, L. Chen, X. Huang, Physical Review B, 68, 195108 (2003).

[25] C.Y. Ouyang, S.Q. Shi, Z.X. Wang, H. Li, X.J. Huang, L.Q. Chen, Journal of Physics: Condensed Matter, 16, 2265 (2004).

[26] D. Li, Y. Huang, D. Jia, Z. Guo, S.-J. Bao, Journal of Solid State Electrochemistry, 14, 889 (2010).

[27] Z.-H. Wang, L.-X. Yuan, J. Ma, L. Qie, L.-L. Zhang, Y.-H. Huang, Electrochimica Acta, 62, 416 (2012).

[28] J.B. Heo, S.B. Lee, S.H. Cho, J. Kim, S.H. Park, Y.S. Lee, Materials Letters, 63, 581 (2009).

[29] J. Hong, X.-L. Wang, Q. Wang, F. Omenya, N.A. Chernova, M.S. Whittingham, J. Graetz, The Journal of Physical Chemistry C, 116, 20787 (2012).

[30] Z.-H. Wang, Q.-Q. Pang, K.-J. Deng, L.-X. Yuan, F. Huang, Y.-L. Peng, Y.-H. Huang, Electrochimica Acta, 78, 576 (2012).

[31] R.-R. Zhao, I.M. Hung, Y.-T. Li, H.-y. Chen, C.-P. Lin, Journal of Alloys and Compounds, 513, 282 (2012).

[32] Y. Wang, Y. Yang, X. Hu, Y. Yang, H. Shao, Journal of Alloys and Compounds, 481, 590 (2009).

[33] H. Gao, L. Jiao, W. Peng, G. Liu, J. Yang, Q. Zhao, Z. Qi, Y. Si, Y. Wang, H. Yuan, Electrochimica Acta, 56, 9961 (2011).

[34] F. Lu, Y. Zhou, J. Liu, Y. Pan, Electrochimica Acta, 56, 8833 (2011).

[35] C.S. Sun, Y. Zhang, X.J. Zhang, Z. Zhou, Journal of Power Sources, 195, 3680 (2010).

[36] H. Liu, Q. Cao, L.J. Fu, C. Li, Y.P. Wu, H.Q. Wu, Electrochemistry Communications, 8, 1553 (2006).

[37] H.C. Shin, S.B. Park, H. Jang, K.Y. Chung, W.I. Cho, C.S. Kim, B.W. Cho, Electrochimica Acta, 53, 7946 (2008).

[38] S.-h. Wu, M.-S. Chen, C.-J. Chien, Y.-P. Fu, Journal of Power Sources, 189, 440 (2009).

[39] P. Axmann, C. Stinner, M. Wohlfahrt-Mehrens, A. Mauger, F. Gendron, C.M. Julien, Chemistry of Materials, 21, 1636 (2009).

[40] D.Y.W. Yu, K. Donoue, T. Kadohata, T. Murata, S. Matsuta, S. Fujitani, Journal of The Electrochemical Society, 155, A526 (2008).

[41] C.S. Sun, Z. Zhou, Z.G. Xu, D.G. Wang, J.P. Wei, X.K. Bian, J. Yan, Journal of Power Sources, 193, 841 (2009).

[42] G.A. Shafeev, J.-M. Themlin, L. Bellard, W. Marine, A. Cros, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 14, 319 (1996).

[43] D. Shanmukaraj, G.X. Wang, R. Murugan, H.K. Liu, Materials Science and Engineering: B, 149, 93 (2008).