A Ferric-Air Battery base on Solid Oxide Fuel Cell for Electrical Energy Storage

A Ferric-Air Battery base on Solid Oxide Fuel Cell for Electrical Energy Storage

Ting Luo Shaorong Wang* Le Shao Jiqing Qian Xiaofeng Ye Zhongliang Zhan Tinglian Wen 

CAS Key Laboratory of Materials for Energy Conversion, Shanghai Institute of Ceramics, Chinese Academy of Sciences (SICCAS), P.R. China

Corresponding Author Email: 
6 March 2013
6 April 2013
28 May 2013
| Citation

We report a ferric-air, solid oxide battery that consists of a tubular solid oxide cell with Ca(OH)2/CaO dispersed Fe/FeOx powders integrated as the redox-active materials in the fuel chamber. The key feature here is the use of Ca(OH)2 to prevent agglomeration and coarsening of Fe/FeOx powders, and more importantly to enable in situ production of H2/H2O as the electrochemical active redox couple in the fuel electrode. The proof-of-concept solid oxide battery exhibits an energy capacity of 144 Wh kg-1-Fe at a ferric utilization of 18.8% and excellent stability in ten discharge/charge cycles with a voltage efficiency of 83% that have great potential for improvement. These results showed encouraging promise of the ferric-air, solid oxide batteries for electrical energy storage applications.


Ferric-Air battery, solid oxide fuel cell, electrical energy storage, Tubular design

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements

[1] H. Chen, T. N. Cong, W. Yang, C Tan, Y. Li, Y. Ding, Progress in Natural Science, 19, 291 (2009).

[2] B. Dunn, H. Kamath, J.M. Tarascon, Science, 334, 928 (2011).

[3] M. Roeb, H. M€uller-Steinhagen, Science, 329, 773 (2010).

[4] A.S. ARICÒ, P. Bruce, B. Scrosatl, J. Tarascon, W.V. Schalk- wijk, nature materials, 4, 366 (2005).

[5] J. Kondoh, I. Ishii, H. Yamaguchi, A. Murata, K. Otani, K. Sakuta, N. Higuchi, S. Sekine, M. Kamimoto, Energy Conver- sion & anagement, 1, 1863 (2000).

[6] G. Jeong, Y. Kim, H. Kim, Y. Kimd, H. Sohn. Energy Environ. Sci., 4, 1986 (2011).

[7] R. Berthelot, D. Carlier, C. Delmas, Nat. Mater., 10, 74 (2011).

[8] P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Chem. Mater., 22, 4126 (2010).

[9] M. Skyllas-Kazacos, M. Rychcik, R.G.Robins, A.G.Fane, M.A. Green, J. Electrochem. Soc., 133, 1057 (1982).

[10] M. Skyllas-Kazacos, G. Kazacos, G. Poon, H. Verseema, Int. J. Energy Res., 34, 182 (2010).

[11] A. Hauch, S.D. Ebbesen, S.H. Jensen, M. Mogensen, J. Mater. Chem., 18, 2331 (2008).

[12] M. Ni, M.K. Leung, D.Y. Leung, Int. J. Hydrogen Enegy, 33, 2337 (2008).

[13] B.C.H. Steele, A. Heinzel, Nature, 414, 345 (2001).

[14] N. Xu, X. Li, X. Zhao, J.B. Goodenough, K. Huang, Energy Environ. Sci., 4, 4942 (2011).

[15] X. Zhao, N. Xu, X. Li, Y. Gong, K. Huang, RSC Advances, 2, 10163 (2012).

[16] R.Z. Liu, S.R. Wang, Bo Huang, C.H. Zhao, J.L. Li, Z.R. Wang, Z.Y. Wen, T.L. Wen., J. Solid State Electrochem., 13, 1905 (2009).

[17] Z. Zhan, W. Kobsiriphat, J.R. Wilson, M. Pillai, I. Kim, S.A. Barnett, Energy & Fuels, 23, 3089 (2009).

[18] M. Rosa Palacion , Chem. Soc. Rev., 38, 2565 (2009).

[19] Z. Zhan, D. Han, T. Wu, X. Ye, S. Wang, T. Wen, S. Cho, S. A. Barnett, RSC Advances, 2, 4075 (2012).