OPEN ACCESS
We report a ferric-air, solid oxide battery that consists of a tubular solid oxide cell with Ca(OH)2/CaO dispersed Fe/FeOx powders integrated as the redox-active materials in the fuel chamber. The key feature here is the use of Ca(OH)2 to prevent agglomeration and coarsening of Fe/FeOx powders, and more importantly to enable in situ production of H2/H2O as the electrochemical active redox couple in the fuel electrode. The proof-of-concept solid oxide battery exhibits an energy capacity of 144 Wh kg-1-Fe at a ferric utilization of 18.8% and excellent stability in ten discharge/charge cycles with a voltage efficiency of 83% that have great potential for improvement. These results showed encouraging promise of the ferric-air, solid oxide batteries for electrical energy storage applications.
Ferric-Air battery, solid oxide fuel cell, electrical energy storage, Tubular design
[1] H. Chen, T. N. Cong, W. Yang, C Tan, Y. Li, Y. Ding, Progress in Natural Science, 19, 291 (2009).
[2] B. Dunn, H. Kamath, J.M. Tarascon, Science, 334, 928 (2011).
[3] M. Roeb, H. M€uller-Steinhagen, Science, 329, 773 (2010).
[4] A.S. ARICÒ, P. Bruce, B. Scrosatl, J. Tarascon, W.V. Schalk- wijk, nature materials, 4, 366 (2005).
[5] J. Kondoh, I. Ishii, H. Yamaguchi, A. Murata, K. Otani, K. Sakuta, N. Higuchi, S. Sekine, M. Kamimoto, Energy Conver- sion & anagement, 1, 1863 (2000).
[6] G. Jeong, Y. Kim, H. Kim, Y. Kimd, H. Sohn. Energy Environ. Sci., 4, 1986 (2011).
[7] R. Berthelot, D. Carlier, C. Delmas, Nat. Mater., 10, 74 (2011).
[8] P. Moreau, D. Guyomard, J. Gaubicher, F. Boucher, Chem. Mater., 22, 4126 (2010).
[9] M. Skyllas-Kazacos, M. Rychcik, R.G.Robins, A.G.Fane, M.A. Green, J. Electrochem. Soc., 133, 1057 (1982).
[10] M. Skyllas-Kazacos, G. Kazacos, G. Poon, H. Verseema, Int. J. Energy Res., 34, 182 (2010).
[11] A. Hauch, S.D. Ebbesen, S.H. Jensen, M. Mogensen, J. Mater. Chem., 18, 2331 (2008).
[12] M. Ni, M.K. Leung, D.Y. Leung, Int. J. Hydrogen Enegy, 33, 2337 (2008).
[13] B.C.H. Steele, A. Heinzel, Nature, 414, 345 (2001).
[14] N. Xu, X. Li, X. Zhao, J.B. Goodenough, K. Huang, Energy Environ. Sci., 4, 4942 (2011).
[15] X. Zhao, N. Xu, X. Li, Y. Gong, K. Huang, RSC Advances, 2, 10163 (2012).
[16] R.Z. Liu, S.R. Wang, Bo Huang, C.H. Zhao, J.L. Li, Z.R. Wang, Z.Y. Wen, T.L. Wen., J. Solid State Electrochem., 13, 1905 (2009).
[17] Z. Zhan, W. Kobsiriphat, J.R. Wilson, M. Pillai, I. Kim, S.A. Barnett, Energy & Fuels, 23, 3089 (2009).
[18] M. Rosa Palacion , Chem. Soc. Rev., 38, 2565 (2009).
[19] Z. Zhan, D. Han, T. Wu, X. Ye, S. Wang, T. Wen, S. Cho, S. A. Barnett, RSC Advances, 2, 4075 (2012).