Microwave Assisted Synthesis of Ru3Pd6Pt Cathode Catalyst in a PEM Fuel Cell

Microwave Assisted Synthesis of Ru3Pd6Pt Cathode Catalyst in a PEM Fuel Cell

F. Leyva-Noyola O. Solorza-Feria

Depto. Química. Centro de Investigación y Estudios Avanzados del IPN. A. Postal 14-740, C.P. 07360, México, D.F., México

Corresponding Author Email: 
osolorza@cinvestav.mx
Page: 
147-150
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.3
Received: 
5 November 2012
|
Accepted: 
30 January 2013
|
Published: 
8 July 2013
| Citation
Abstract: 

Nanoparticles of Ru3Pd6Pt have been previously produced by different synthesis routes that involve high temperatures and relative high pressures and long time. The usage of a conventional microwave assisted synthesis reduces environmental risk impact as well as the cost effective production in large scale with minimum set up modifications. These features are the motivations for the use of micro- waves in the synthesis of the Ru3Pd6Pt catalyst for PEM fuel cell applications to reduce the Pt loading. In this communication a tri-metallic electrocatalyst was produced by the reduction of the corresponding metallic salts, RuCl3, PdCl2, and H2PtCl6 in ethylene glycol using a modified conventional microwave device. Oxygen reduction reaction kinetic analysis results conducted to a Tafel slope, (-b = 41.2 ± 1.7 mV dec-1) at low overpotential, and exchange current density (i0 = 3.01 ± 0.39 × 10-5 mA cm-2) in 0.5M H2SO4. This electrocatalyst exhib- ited good performance and stability in a single H2/O2 PEM fuel cell.

Keywords: 

Microwave assisted synthesis, Ru3Pd6Pt, oxygen reduction reaction, PEM fuel cells.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] N.A. Karim, S.K. Kamarudin, Appl. Energy, 103, 212 (2013).

[2] G. Ramos-Sánchez, M.M. Bruno, Y.R.J. Thomas, H.R. Corti, O. Solorza-Feria, Int. J. Hydrogen Energy, 37, 31 (2012).

[3] A.A. Gewirth, M.S. Thorum, Inorg. Chem., 49, 3557 (2010).

[4] S. Song, Yi Wang, Pei Kang Shen. J. Power Sources, 170, 46 (2007).

[5] S. Harish, S. Baranton, C. Coutanceau, J. Joseph, J. Power Sources, 214, 33 (2012).

[6] B.L. Hayes, Aldrichimica Acta, 37, 66 (2004).

[7] J.J. Salvador-Pascual, V. Collins-Martínez, A. López-Ortiz, O. Solorza-Feria, J. Power Sources, 195, 3374 (2010).

[8] A. Sarkar, A. V. Murugan, A. Manthiram, Fuel Cells, 10, 375 (2010).

[9] C. Grolleau, C. Coutanceau, F. Pierre, J.M. Leger, J. Power Sources, 195, 1569 (2010).

[10] F. Leyva-Noyola, O. Solorza-Feria, Int. J. Electrochem. Sci., 7, 11389 (2012).

[11] P. Nekooi, M. K. Amini, Electrochim. Acta, 55, 3286 (2010). 

[12] Ch. Yang, N.K. Van der Laak, K.-Yu Chan, X. Zhang, Electro-chim. Acta, 75, 262 (2012).

[13] K. Suárez-Alcántara, O. Solorza-Feria, Electrochim Acta, 53, 4981 (2008).

[14] D.C. Martínez-Casillas, O. Solorza-Feria, ECS Transactions, 36, 565 (2011).

[15] A. Cuesta, A. Couto, A. Rincón, M.C. Pérez, A. López, C. Gutiérrez, J. Electrochem. Chem., 586, 184 (2006).

[16] A.J. Bard, L. Faulkner in Electrochemical methods: principles and applications. New York. Willey, 2001, p. 341.

[17] A. Velasco Martínez, M. Torres Rodríguez, M. Gutierrez Ar- zaluz, P. Angel Vicente, O. Solorza Feria, Int. J. Electrochem. Sci., 7, 7140 (2012).

[18] A. Ezeta-Mejía, O. Solorza-Feria, H.J. Dorantes-Rosales, J.M. Hallen López, E.M. Arce Estrada, Int. J. Electrochem. Sci., 7, 8940 (2012).

[19] C. Coutanceau, P. Crouigneau, J.M. Leger, C. Lamy, J. Elec- troanal. Chem., 379, 389 (1994).

[20] D.C. Martínez-Casillas, G. Vázquez-Huerta, J.F. Pérez-Robles, O Solorza-Feria, J. Power Sources, 196, 4468 (2011).