Thermodynamic Analysis of the Absorption Enhanced Autothermal Reforming of Ethanol

Thermodynamic Analysis of the Absorption Enhanced Autothermal Reforming of Ethanol

Virginia Collins-Martínez Miguel A. Escobedo Bretado Jesús Salinas Gutiérrez Miguel Meléndez Zaragoza Vanessa. G. Guzmán Velderrain Alejandro López Ortiz 

Departamento de Materiales Nanoestructurados, Centro de Investigación em Materiales Avanzados, S.C. Miguel de Cervantes 120, Chihuahua, Chih. 31109, México

Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Ave. Veterinaria s/n, Circuito Universitario, Durango 34120, México

Page: 
229-237
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.23
Received: 
28 November 2012
|
Accepted: 
7 February 2013
|
Published: 
8 July 2013
| Citation
Abstract: 

Thermodynamic analysis of the absorption enhanced autothermal reforming of ethanol using CaO as CO2 absorbent and O2 in the feed was performed to determine favorable operating conditions to produce a high hydrogen ratio (HR, mols H2-produced/EtOH-feed) and hydrogen concentration in gas product. Steam/Ethanol (S/EtOH) and oxygen/ethanol (O2/EtOH) feed molar ratios were varied in or- der to find autothermal (ΔH ≈ 0) and carbon free operating conditions at 300-900°C and CaO as CO2 absorbent at 1 atm. Carbon forma- tion analysis used S/EtOH = 1.75-2.8, while for hydrogen production varied from stoichiometric; 3:1 to 6.5:1, and O2/ETOH from 0 to 1.0. Results indicate no carbon formation at S/EtOH ≥ stoichiometric. The absorption enhanced autothermal reforming of ethanol using CaO, O2/EtOH = 0.33, S/EtOH = 6.5 and 600°C, produced an autothermal system with 98% H2 and only a reduction of 9.8% in HR and with respect to the CO2 absorption reforming without O2 feed.

Keywords: 

Absorption-Enhanced-Autothermal-Reforming, CO2-absorbent, Thermodynamic Analysis.

1. Introduction
2. Simulation Calculations
3. Results and Discussion
4. Conclusions
  References

[1] T. Ogasawara, A. Debart, M. Holzapfel, M. Novak, P.G. Bruce, J. Am. Chem. Soc., 128, 4 (2006).

[2] H. Zhou, G. Flamant, D. Gauthier, Chem. Eng. Sci., 59, 20 (2004).

[3] Y. Kalinci, A. Hepbasli, I. Dincer, Int. J. Hydrogen Energy, 34, 21 (2009).

[4] X.M. Guo, E. Trably, E. Latrille, H. Carrere, J.P. Steyer, Int. J. Hydrogen Energy, 35, 19 (2010).

[5] J.M. Serra, V.B. Vert, O. Büchler, W.A. Meulenberg, H.P. Buchkremer, Chem. Mater., 20, 12 (2008).

[6] T. Saida, N. Ogiwara, Y. Takasu, W. Sugimoto, J. Phys. Chem. C., 114, 31 (2010).

[7] G.W. Huber, J.W. Shabaker, J.A. Dumesic, Science, 300, 5628 (2003).

[8] R.D. Cortright, R.R. Davda, J.A. Dumesic, Nature, 418, 6901 (2002).

[9] D. Scott, B.Y. Liaw, Energy Environ. Sci., 2, 9 (2009).

[10] M. Slinn, K. Kendall, C. Mallon, J. Andrews, Bioresour. Tech- nol., 99, 13 (2008).

[11] X. Li, E. Mupondwa, S. Panigrahi, L. Tabil, S. Sokhansanj, M. Stumborg, Renewable Sustainable Energy Rev., 16, 5 (2012).

[12] G. Rabenstein, V. Hacker, J. Power Sources, 185, 2 (2008). 

[13] J.R. Salge, G.A. Deluga, L.D. Schmidt, J. Catal., 235, 1 (2005). 

[14] G.A. Deluga, J.R. Salge, L.D. Schmidt, X.E. Verykios, Sci-ence, 303, 5660 (2004).

[15] P.D. Vaidya, A.E. Rodrigues, Chem. Eng. J., 117, 1 (2006). 

[16] A.N. Fatsikostas, X.E. Verykios, J. Catal., 225, 2 (2004). 

[17] E. Ochoa-Fernández, H. Berntsen, T. Zhao, L. Hi, E. A Blek-kan, D. Chen, “Proceedings of the North American Catalysis Society 20th North American Meeting”, Houston, Texas, June 17-22, (2007).

[18] A. Lima da Silva, I.L. Müller, Int. J. Hydrogen Energy, 36, 3 (2011).

[19] S. Jarungthammachote, A. Dutta, Energy Convers. Manage., 49, 6 (2008).

[20] A. Roine, Chemical reaction and equilibrium software with extensive thermo-chemical database. Outokumpu HSC 6.0 Chemistry for windows, (2010).

[21] M. Benito, J.L. Sanz, R. Isabel, R. Padilla, R. Arjona, L. Daza, J. Power Sources, 151, 4 (2005).

[22] A.N. Fatsikostas, X.E. Verykios, J. Catal., 225, 2 (2004).  

[23] P. Biswas, D. Kunzru, Int. J. Hydrogen Energy, 32, 8 (2007). 

[24] A.J. Akande, Production of Hydrogen by Reforming of Crude Ethanol, Master of Science Thesis, University of Saskatche- wan, Saskatoon, Saskatchewan, Canada, 2005.

[25] M. Li, Int. J. Hydrogen Energy, 34, 23 (2009).

[26] B. Zhang, X. Tang, Y. Li, W. Cai, Y. Xu, W. Shen, Catal. Commun., 7, 6 (2006).

[27] C. Graschinsky, P. Giunta, N. Amadeo, M. Laborde, Int. J. Hydrogen Energy, 37, 13 (2012).

[28] S.B. Cavallaro, V. Chiodo, A. Vita, S. Freni, J. Power Sources, 123, 1 (2003).

[29] M.A. Escobedo Bretado, M.D. Delgado Vigil, J. Salinas Gutiérrez, V. Collins-Martínez, A. López Ortiz, “Proceedings of the 11th International Hydrogen Congress Mexican Hydro- gen Society”, Cuernavaca, Mexico, September 20-23, (2011).