Electrodeposition of ZnO for Application in Dye-sensitized Solar Cells

Electrodeposition of ZnO for Application in Dye-sensitized Solar Cells

F.I. Lizama Tzec M.A. Aguilar Frutis G. Rodríguez Gattorno G. Oskam

Department of Applied Physics, CINVESTAV-IPN, Mérida, Yuc. 97310, México

CICATA-IPN, Unidad Legaria, México D.F., 11500, México

Corresponding Author Email: 
oskam@mda.cinvestav.mx
Page: 
209-215
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.20
Received: 
15 October 2012
|
Accepted: 
21 January 2013
|
Published: 
4 July 2013
| Citation
Abstract: 

ZnO has been electrodeposited from 0.5 M Zn(NO3)2 at pH 4.5 with and without polyethylene glycol (PEG) as additive. Cyclic voltammetry on FTO substrates reveals two electrochemical regimes, where reduction of nitrate and water are rate determining, respec- tively. ZnO films were galvanostatically electrodeposited as a function of the deposition current density: at low current densities, where nitrate reduction is rate determining, highly crystalline ZnO films were obtained, whereas amorphous ZnO films were obtained at higher current densities, where water reduction dominates. The amorphous films transform to crystalline ZnO upon sintering, and SEM images show that the presence of PEG results in a homogeneous film morphology. The films were used for the fabrication of dye-sensitized solar cells (DSSCs), resulting in solar cell conversion efficiencies of up to 1.4% for non-sintered ZnO films deposited at low current density (without PEG), while the best cells were obtained with films electrodeposited from the plating bath with 0.15 mM PEG with efficiencies of up to 1.8% for sintered films prepared at higher current density. These results illustrate that the presence of PEG in the plating bath opti- mizes the film morphology and, hence, the performance of ZnO-based dye-sensitized solar cells.

Keywords: 

Cothodic electrodeposition; nanostructured ZnO; Dye-sensitized solar cells; morphology determing additive; PEG.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] B. O'Regan and M. Grätzel, Nature, 353, 737 (1991).

[2] G. Oskam, Curr. Top. Electrochem., 10, 141 (2004).

[3] A. Hagfeldt, G. Boschloo, L.K.L. Sun and H. Pettersson, Chem. Rev., 110, 6595 (2010).

[4] E. Guillén, F. Casanueva, J.A. Anta, A. Vega-Poot, G. Oskam, R. Alcántara, C. Fernández-Lorenzo and J. Martín-Calleja, J. Photochem. Photobiol. A: Chem., 200, 364 (2008).

[5] C. Bauer, G. Boschloo, E. Mukhtar and A. Hagfeldt, J. Phys. Chem. B, 105 (2001).

[6] D.C. Look, D.C. Reynolds, J.R. Sizelove, R.L. Jones, C.W. Litton, G. Cantwell and W.C. Harsch, Solid State Commun., 105, 399 (1998).

[7] R. Katoh, A. Furube, A.V. Barzykin, H. Arakawa and M. Ta- chiya, Coord. Chem. Rev., 248, 1195 (2004).

[8] C.H. Seager and S.M. Myers, J. Appl. Phys., 94 (2003).

[9] A. Yella, H.-W. Lee, H.N. Tsao, C. Yi, A.K. Chandiran, M.K. Nazeeruddin, E.W.-G. Diau, C.-Y. Yeh, S.M. Zakeeruddin and M. Gratzel, Science, 334, 629 (2011).

[10] M. Saito and S. Fujihara, Energy Environ. Sci., 1, 280 (2008). 

[11] K. Keis, C. Bauer, G. Boschloo, A. Hagfeldt, K. Westermark, H. Rensmo and H. Siegbahn, J. Photochem. Photobiol. A: Chem., 148, 57 (2002).

[12] R. Katoh, A. Furube, T. Yoshihara, K. Hara, G. Fujihashi, S. Takano, S. Murata, H. Arakawa and M. Tachiya, J. Phys. Chem. B, 108, 4818 (2004).

[13] R. Tena-Zaera, J. Elias, G. Wang and C. Levy-Clement, J. Phys. Chem. C, 111, 16706 (2007).

[14] B. Canava and D. Lincot, J. Appl. Electrochem., 30, 711 (2000).

[15] Y. Feng, W. Xindong, Y. Zhuanyu, L. Jingjing, L. Caishun and W. Tongtao, Rare Metals, 27, 513 (2008).

[16] E. Rayon, J. Cembrero and B. Mari, Mater. Lett., 64, 2601 (2010).

[17] A.I. Inamdar, S.H. Mujawar, S.B. Sadale, A.C. Sonavane, M.B. Shelar, P.S. Shinde and P.S. Patil, Sol. Energy Mater. Sol. Cells, 91, 864 (2007).

[18] A.I. Inamdar, S.H. Mujawar, S.R. Barman, P.N. Bhosale and P.S. Patil, Semicond. Sci. Technol., 23, 085013 (2008). 

[19] S. Yamabi and H. Imai, J. Mater. Chem., 12, 3773 (2002).

[20] F. Wang, R. Liu, A. Pan, L. Cao, K. Cheng, B. Xue, G. Wang, Q. Meng, Q.L.J. Li, Y. Wang and B.Z.T. Wang, Mater. Lett., 61, 2000 (2007).

[21] J. Lee, S.C. Nam and Y. Tak., Korean J. Chem. Eng., 22, 161 (2005).

[22] J. Zhao, J. Zheng-Guo, T. Li, L. Xiao-Xin and L. Zhi-Feng, J. Am. Ceram. Soc., 89, 2654 (2006).

[23] M. Izaki and T. Omi, J. Electrochem. Soc., 143, L53 (1996). 

[24] M. Izaki and Y. Saijo, J. Electrochem. Soc., 150, C73 (2003). 

[25] O.W.J.S. Rutten, A.V. Sandwijk and G.V. Weert, J. Appl. Electrochem., 29, 87 (1999).

[26] K.-S. Choi and E.M.P. Steinmiller, Electrochim. Acta, 53,  6953 (2008).

[27] F.I. Lizama-Tzec and G. Oskam, ECS Transactions, 25, 45 (2010).

[28] K. Nomura, N. Shibata and M. Maeda, J. Electrochem. Soc., 7, F76 (2002).

[29] L. Lijuan, L. Gang, L. Bihui, C. Zhenghua and T. Yiwen, Wuhan Univ. J. Nat. Sci., 115, 130 (2010).

[30] S. Otani, J. Katayama, H. Umemoto and M. Matsuoka, J. Elec- trochem. Soc., 153, C551 (2006).

[31] J.-P. Jolivet, M. Henry and J. Livage, Metal oxide chemistry and synthesis from solution to solid state, John Wiley & Sons (2000).

[32] K. Murase, H. Tada, T. Shinagawa, M. Izaki and Y. Awakura, J. Electrochem. Soc., 153, C735 (2006).

[33] M.T. de Groot and M.T.M. Koper, J. Electroanal. Chem., 562, 81 (2004).

[34] C. Milhano, D. Pletcher and R.E. White, The electrochemistry and electrochemical technology of nitrate, p. 1, Springer New York, 2009.

[35] Y.Y. Xi, Y.F. Hsu, A.B. Djurisic and W.K. Chan, J. Electro- chem. Soc., 155, D595 (2008).

[36] J.C. Ballesteros, P. Díaz-Arista, Y. Meas, R. Ortega and G. Trejo, Electrochim. Acta, 52, 3686 (2007).

[37] J. Chen, S.K. Spear, J.G. Huddleston and R.D. Rogers, Green Chem., 7, 64 (2005).

[38] F.I. Lizama-Tzec and G. Oskam, ECS Transactions, 41, 47 (2012).

[39] T. Yoshida, D. Komatsu, N. Shimokawa and H. Minoura, Thin Solid Films, 451, 166 (2004).

[40] A.T. Cursino, A.S. Mangrich, J.E. Gardolinski, N. Mattoso and F. Wypych, J. Braz. Chem. Soc., 22, 1183 (2011).

[41] A. Velasco, T. Oguchi and K. Hee-Joon, J. Cryst. Growth, 311, 2731 (2009).

[42] E.J. Griffith, Anal. Chem., 29, 198 (1957).

[43] N. Kanari, D. Mishra, I. Gaballah and B. Dupré, Thermochim. Acta, 410, 93 (2004).