Capacitance Improvement of Carbon Aerogels by the Immobilization of Polyoxometalates Nanoparticles

Capacitance Improvement of Carbon Aerogels by the Immobilization of Polyoxometalates Nanoparticles

D.A. Baeza-Rostro A.K. Cuentas-Gallegos*

Centro de Investigación en Energía, Universidad Nacional Autónoma de México Privada Xochicalco S/N Col. Centro, AP 34, CP 62580 Temixco, Morelos, México

Corresponding Author Email: 
akcg@cie.unam.mx
Page: 
203-207
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.19
Received: 
10 September 2012
|
Accepted: 
9 December 2012
|
Published: 
8 July 2013
| Citation
Abstract: 

A hybrid material based on the immobilization of H3PMo12O40 polyoxometalate nanoparticles (POM) was obtained by  using an activated carbon aerogel (ACPQ2-100) matrix, and was tested as a potential electrode material for a supercapacitor cell. A chemical activation with KOH was carried out in the carbon aerogel matrix (ACP-100), obtaining a greater BET surface area (334g/cm2) and differ- ent electrochemical behavior (ACPQ2-100). Both matrices (ACP-100 and ACPQ2-100) were immersed in a 1.15mM POM solution in or- der to determine the role of the chemical activation procedure in the immobilization of POM nanoparticles. All materials were character- ized by Attenuated Total Reflection (ATR) and nitrogen isotherms. For the electrochemical characterization, the synthesized materials were mixed with 10% of Teflon and 20% conducting carbon in weight ratio. Then, a film was made and a portion was pressed onto a stainless steel grid as current collector. Cyclic voltammetry in 3-electrode cells using a 0.5 M H2SO4 electrolyte was used to determine the electro- chemical performance. The chemical activation of the aerogel matrix with KOH was the key factor to immobilize and disperse the POM nanoparticles, which improved the capacitance behavior making this material suitable for its application as supercapacitor electrode ma- terial.

Keywords: 

carbon aerogels, polyoxometalates, supercapacitors, energy storage, hybrid materials

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements
  References

[1] H. Pröbstle, R. Saliger, J. Fricke, K.K. Unger, G. Kreysa, J.P. Baselt, Studies in Surface Science and Catalysis, 128, 371 (2000).

[2] Junbing Wang, Journal of Power Sources, 185, 589 (2008).

[3] R. Saliger, U. Fisher, C. Herta, J. Fricke, Journal of Non- Crystalline Solids, 225, 81 (1998).

[4] P. Gómez-Romero, K. Cuentas-Gallegos, M. Lira-Cantú and N. Casañ-Pastor, Journal of Materials Science, 40, 1423 (2005).

[5] A.K. Cuentas-Gallegos, M. Gonzales-Toledo and M.E. Rincón, Revista Mexicana de Física, 53, 91 (2007).

[6] P. Gómez-Romero, M. Chojak, K. Cuentas-Gallegos, J.A. Asensio, P.J. Kulesza, N. Casañ-Pastor, M. Lira-Cantú, Elec- trochemistry Communications, 5, 149 (2003).

[7] M.H. Mirzaeian, Journal of Materials Science, 44, 2705 (2009).

[8] Tamon, H. Ishizaka, T. Araki and M. Okazaki. Carbon, 36, 1257 (1998).

[9] R.W. Pekala, J.C. Farmer, C.T. Alviso, T.D. Tran, S.T. Mayer, J.M. Miller and B. Dunn, Journal of Non-Crystalline Solids, 225, 74 (1998).

[10] Xianhua Zeng, Electrochimica Acta, 53, 5711 (2008).

[11] A.K. Cuentas-Gallegos, S.Peñaloza-Jiménez, D.A. Baeza- Rostro, A. Germán-García, Journal of New Materials for Elec- trochemical Systems, 13, 369. (2010).

[12] R.D. Gall, C.L. Hill, J.E. Walker, Chemistry of Materials, 8, 2523 (1996).

[13] J. Alcañiz-Monge, G. Trautwein, S. Parres-Esclapez, J.A. Ma- ciá-Argulló, Microporous and Mesoporous Materials, 115, 440 (2008).

[14] Mukai S.R., Applied Catalysis A: General, 256, 99 (2003). 

[15] Ghetti P., Ricca L., Luciana A., Fuel, 75, 565 (1996). 

[16] Pastor-Villegas J.J., Gómez-Serrano V., Durán-Valle C.J., Higes-Rolando F.J., Journal of Analytical and Applied Pyroly- sis, 50, 1 (1999).

[17] A.K. Cuentas-Gallegos, A. Zamudio-Flores, M. Casas-Cabanas, Journal of Nano Research, 14, 11 (2011).

[18] A.K. Cuentas-Gallegos, M. Miranda-Hernández, A. Vargas- Ocampo, Electrochimica Acta, 54, 4378 (2009).

[19] (a)G. Pognon, T. Brousse, D. Bélanger, Carbon, 49, 1340 (2011). (b)G. Pognon, T. Brousse, L. Demarconnay, D. Bé- langer, Journal of Power Sources, 196, 4117 (2011).

[20] Jun Li, Xianyou Wang, Qinghua Huang, Sergio Gamboa, P.J. Sebastian, Journal of Power Sources, 158, 784 (2006).

[21] C. Liang, G. Sha, S. Guo, Journal of Non-Crystalline Solids, 271, 167 (2000).

[22] Conley R.T., Espectroscopía Infrarroja., Madrid Ed. ALHAM- BRA, S.A. 1979.

[23] A.K. Cuentas-Gallegos, M. Lira-Cantu, N. Casañ-Pastor and P. Gómez-Romero, Advanced Functional Materials, 15, 1125 (2005).