Effect of Carbon Pososity on the Electrochemical Properties of Carbon/Polyaniline Supercapacitor Electrodes

Effect of Carbon Pososity on the Electrochemical Properties of Carbon/Polyaniline Supercapacitor Electrodes

M.A. Torre C. del Río E. Morales*

Instituto Ciencia y Tecnología de Polímeros (C.S.I.C.), c/ Juan de la Cierva 3, 28006 Madrid, Spain

Corresponding Author Email: 
5 November 2012
13 December 2012
4 July 2013
| Citation

Supercapacitors have attracted great attention in power source applications, due to their high power density, elevated charge/discharge rate, good reversibility and long life. Activated carbons are the most frequently used electrode material, due to their high accessibility, non-toxicity, high chemical stability, good electrical conductivity, high surface area and low cost, but in practice the capaci- tance values are limited by the material microstructure. In this work we report on the synthesis and electrochemical characterization of carbon/polyaniline composites, synthesized by in-situ polymerization in acid media of aniline monomer on the surface of two activated carbons having different textural properties, and on the effect of the carbon porosity on the electrochemical properties of the electrodes. Results obtained indicate that the BET specific surface of the composites decreases sharply due to the collapse of the porous structure (mainly the micropores) of the carbon by the polyaniline chains. Regarding capacitance values, Csp increases on increasing polyaniline loading in the composite, however high polymer concentration lead to a decrease on capacitance when high current were applied, proba- bly due to diffusion restrictions of the electrolyte anions and cations to the carbon surface.


Activated carbon, Polyaniline, Composite, Supercapacitor, Porosity, Specific capacitance

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
5. Acknowledgements

[1] A.F. Burke, T.C. Murphy, in “Proceedings of the Materials Research Society Symposium on Materials for Energy Storage and Conversion: Batteries, Capacitors and Fuel Cells”, Eds. D.H. Goughtly, B. Vyas, T. Takamura, J.R. Huff, Pittsburgh, USA, 1995.

[2] S. Sarangapani, B.V. Tilak, C.P. Chen, J. Electrochem. Soc., 143, 3791 (1996).

[3] C. Arbizzani, M. Mastragostino, B. Scosati in “Handbook of Organic Conductive Molecules and Polymers”, vol. 4, Ed. H.S. Nalwa, Wiley, Chichester, UK, 1997.

[4] B.E. Conway in “Electrochemical Supercapacitors”, Kluwer Academic/Plenum, New York, USA, 1999.

[5] K. Babel, K. Jurewicz, J. Phys. Chem. Solids, 65, 275 (2004).

[6] A.B. Fuertes, G. Lota, T.A. Centeno, E. Frackowiak, Electro- chim. Acta, 50, 2799 (2005).

[7] J. Li, X.Y. Wang, Q.H. Huang, S. Gamboa, P.J. Sebastian, J. Power Sources, 158, 784 (2006).

[8] E. Frackowiak, K. Jurewicz, S. Delpeux, F. Beguin, J. Power Sources, 97, 822 (2001).

[9] H.H. Zhou, H. Chen, S.L. Luo, G.W. Lu, W.Z. Wei, Y.F. Kuang, J. Solid State Electrochem., 9, 574 (2005).

[10] L.-Z. Fan, J. Maier, 1958, 937 (2006).

[11] A. Laforgue, P. Simon, C. Sarrazin, J.-F. Fauvarque, J. Power Sources 80, 142 (1999).

[12] J.H. Jang, A. Kato, K. Machida, K. Naoi, J. Electrochem. Soc., 153, A321 (2006).

[13] Y.G. Wang, Y.Y. Xia, Electrochim. Acta, 51, 3223 (2006). 

[14] R.N. Reddy, R.G. Reddy, J. Power Sources, 124, 330 (2003). 

[15] J.H. Park, J.M. Ko, O.O. Park, D.W. Kim, J. Power Sources, 105, 20 (2002).

[16] Q.F. Xiao, X. Zhou, Electrochim. Acta, 48, 575 (2003).

[17] J. Jang, J. Bae, M. Choi, S.H. Yoon, Carbon, 43, 2730 (2005).

[18] E. Frackowiak, V. Khomenko, K. Jurewicz, K. Lota, F. Be- guin, J. Power Sources, 153, 413 (2006).

[19] H.F. An, Y. Wang, X.Y. Wang, L.P. Zheng, X.Y. Wang, L.H. Yi, L. Bai, X.Y. Zhang, J. Power Sources, 195, 6994 (2010). 

[20] D. Bélanger, X. Ren, J. Davey, F. Uribe, S. Gottesfeld, J. Elec-trochem. Soc., 147, 2923 (2000).

[21] K.S. Ryu, K.M. Kim, N.-G. Park, Y.J. Park, S.H. Chang, J. Power Sources, 103, 305 (2002).

[22] H.H. Zhou, H. Chen, S.L. Luo, G.W. Lu, W.Z. Wei, Y.F. Kuang, J. Solid State Electrochem., 9, 574 (2005).

[23] S. Brunauer, P. Emmet, E. Teller, J. Am. Chem. Soc., 60, 309 (1938).

[24] H.F. Stoeckli in “Porosity in Carbons”, Ed. J.W. Patrick, Ed- ward Arnold, London, UK, 1995.

[25] M. Jaroniec, A. Safari, Langmuir, 13, 6267 (1997).

[26] C.C. Hu, J.Y. Lin, Electrochimica Acta, 47, 4055 (2002).