Platinum Reduction Study on Pt/C Electro-catalysts for PEMFC

Platinum Reduction Study on Pt/C Electro-catalysts for PEMFC

M.L. Hernandez-PichardoR. Gonzalez-Huerta P. del Angel E. Palacios-Gonzalez M. Tufiño-Velazquez J.C. Sánchez-Ochoa 

Instituto Politécnico Nacional-ESIQIE. Laboratorio de Investigación de Fisicoquímica y Materiales, UPALM, 07738, México, D. F.

Instituto Politécnico Nacional -ESIQIE, Laboratorio de Electrocatálisis, UPALM, 07738 D.F. México, D.F.

Instituto Mexicano del Petróleo, Dirección de Investigación y Posgrado, Eje Central L. Cárdenas 152, 07730, México, D. F.

Instituto Politécnico Nacional-ESFM, Laboratorio de Física Avanzada, UPALM, 07738 D.F. México, D.F.

Corresponding Author Email: 
mhernandezp@ipn.mx
Page: 
141-145
|
DOI: 
https://doi.org/10.14447/jnmes.v16i3.1
Received: 
18 October 2012
| |
Accepted: 
14 January 2013
| | Citation
Abstract: 

Platinum reduction on Pt/C catalysts was studied on samples prepared by the impregnation method using different Pt precur- sors and reducing agents such as ethanol, sodium borohydride and ethanol-UV light (photo-assisted reduction), in order to compare the efficiency of the different reducing agents. The influence of the reduction level of the platinum species on the electrochemical behavior of these catalysts has been determined. The catalysts were characterized by X-Ray Diffraction (XRD), Scanning Electron Microscopy (SEM), X-ray photoelectron spectroscopy (XPS) and linear and cyclic voltammetry. The results show that the reduction level depends mainly on the platinum precursor. Moreover, it was found that the higher electrochemical activity was found using catalysts reduced with ethanol, whereas by using NaBH4 as the reducing agent, the total reduction of the platinum precursor is very difficult in same synthesis conditions. The analysis of the XPS results shows that samples reduced with ethanol presented the lower PtOx/Pt reduction ratio.

Keywords: 

Chemical Reduction, Photo-assisted Reduction, Reducing Agents.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion
5. Acknowledgements
  References

[1] H. Huang, H. Chen, D. Sun and X. Wang, J. Power Sources, 204, 46 (2012).

[2] D. Wang, Y. Liu, J. Huang and T. You, J. Colloid Interf. Sci., 367, 199 (2012).

[3] M. Wang, F. Xu, H. Sun, Q. Liu, K. Artyushkova, E.A. Stach and J. Xie, Electrochim. Acta, 56, 2566 (2011).

[4] E. Yoo, T. Okada, T. Akita, M. Kohyama, I. Honma and J. Nakamura, J. Power Sources, 196, 110 (2011).

[5] J.J. Salvador-Pascual, V. Collins-Martínez, A. López-Ortíz and O. Solorza-Feria, J. Power Sources, 195, 3374 (2010).

[6] B. Ruiz-Camacho, M.A. Valenzuela, J.A. Pérez-Galindo, F. Pola, M. Miki-Yoshida, N. Alonso-Vante, R.G. González- Huerta, J. New Mat. Electrochemical Systems, 13, 183 (2010).

[7] L. Timperman, Y.J. Feng, W. Vogel, N. Alonso-Vante, Electro- chimica Acta, 55, 7558 (2010).

[8] R.G. González Huerta, M.A. Valenzuela, R. Vargas García, N. Alonso-Vante, M. Tufiño Velázquez and B. Ruiz-Camacho, J. New Mat. Electrochemical Systems 15, 123 (2012).

[9] A.S. Arico, A.K. Shukla, H. Kim, S. Park, M. Min, V. Antonu- cci, Appl. Surf. Sci., 172, 33 (2001).