Comparative Study of Two Types of Iron Doped Carbon Aerogels for Electrochemical Applications

Comparative Study of Two Types of Iron Doped Carbon Aerogels for Electrochemical Applications

Delia GligorLiviu Cosmin Cotet Virginia Danciu 

Department of Environmental Analysis and Engineering, “Babes-Bolyai” University, 30 Fantanele St., 400294 Cluj-Napoca, Romania

Department of Chemical Engineering, “Babes-Bolyai” University, 11 Arany Janos St. 400028 Cluj-Napoca, Romania

Corresponding Author Email: 
delia.gligor@ubbcluj.ro
Page: 
97-101
|
DOI: 
https://doi.org/10.14447/jnmes.v16i2.18
Received: 
11 February 2013
|
Accepted: 
22 March 2013
|
Published: 
10 April 2013
| Citation
Abstract: 

Iron doped carbon aerogels have been prepared by sol-gel polymerization of potassium salt of 2,4-dihydroxybenzoic acid with formaldehyde followed by an ion-exchange process between K+ doped wet gel and Fe(II) or Fe(III) ion aqueous solutions. The resulted Fe(II) or Fe(III) doped gels have been dried in supercritical conditions with liquid CO2 and then pyrolyzed in high temperature resulting two types of iron doped carbon aerogels. These aerogels were morpho-structural investigated by using BET method, transmission electron microscopy, X-ray diffraction and elemental analysis. Also, these iron doped carbon aerogels (CAD-Fe(2+) and CAD-Fe(3+)) were tested for realization of modified carbon paste electrodes. CAD-Fe(2+) aerogel showed better electrochemical activity than CAD-Fe(3+) and also a good electrocatalytic activity towards H2O2 reduction (expressed by an electrocatalytic efficiency of 404% measured at – 500 mV vs. SCE).

Keywords: 

carbon aerogel, modified electrode, electrocatalytic efficiency, hydrogen peroxide.

1. Introduction
2. Experimental
3. Results and Discussions
4. Conclusions
5. Acknowledgements
  References

[1] M. Inagaki, New Carbon Mater., 24, 193 (2009).

[2] C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, E. Morallón, Carbon, 50, 3324 (2012).

[3] L.C. Cotet, V. Danciu, V. Cosoveanu, I.C. Popescu, A. Roig, E. Molins, Rev. Roum. Chim., 52, 1077 (2007).

[4] L.C. Cotet, M. Gich, A. Roig, I.C. Popescu, V. Cosoveanu, E. Molins, V. Danciu, J. Non-Cryst. Solids, 352, 2772 (2006).

[5] S. Tang, G. Sun, J. Qi, S. Sun, J. Guo, Q. Xin, G.M. Haarberg, Chinese J. Catal., 31, 12 (2010).

[6] A. Smirnova, T. Wender, D. Goberman, Y.-L. Hu, M. Aindow, W. Rhine, N.M. Sammes, Int. J. Hydrogen Energy, 34, 8992 (2009).

[7] G. Rasines, P. Lavela, C. Macías, M. Haro, C.O. Ania, J.L. Tirado, J. Electroanal. Chem., 671, 92 (2012).

[8] B. Liu, S. Creager. J. Power Sources, 195, 1812 (2010).

[9] Y.J. Lee, J.C. Jung, J. Yi, S.-H. Baeck, J.R. Yoon, I.K. Song, Curr. Appl. Phys., 10, 682 (2010).

[10] P.J.M. Carrott, L.M. Marques, M. Carrott, Microporous Mesoporous Mater., 131, 75 (2010). 

[11] R.A. Catalão, F.J. Maldonado-Hódar, A. Fernandes, C. Henriques, M.F. Ribeiro, Appl. Catal., B, 88, 135 (2009).

[12] O. Czakkel, E. Geissler, I.M. Szilágyi, E. Székely, K. László, J. Colloid Interface Sci., 337, 513 (2009).

[13] M.B. Dawidziuk, F. Carrasco-Marín, C. Moreno-Castilla, Carbon, 47, 2679 (2009).

[14] S. Cacchi, C.L. Cotet, G. Fabrizi, G. Forte, A. Goggiamani, L. Martín, S. Martínez, E. Molins, M. Moreno-Mañas, F. Petrucci, A. Roig, A. Vallribera, Tetrahedron, 63, 2519 (2007).

[15] L. Lin, M. Juanjuan, J. Liuyan, W. Yunyang, J. Mol. Catal. A: Chem., 291, 1 (2008).

[16] H. Zhu, Z. Guo, X. Zhang, K. Han, Y. Guo, F. Wang, Z. Wang, Y. Wei, Int. J. Hydrogen Energy, 37, 873 (2012).

[17] H.W. Park, U.G. Hong, Y.J. Lee, I.K. Song, Catal. Commun., 20, 89 (2012).

[18] A. Maicaneanu, L.C. Cotet, V. Danciu, M. Stanca, Studia Univ Babes-Bolyai Chem., 54, 117 (2009).

[19] F.J. Maldonado-Hódar, C. Moreno-Castilla, F. Carrasco-Marín, A.F. Pérez-Cadenas, J. Hazard. Mater., 148, 548 (2007). 

[20] W. Yang, D. Wu, R. Fu, Colloids Surf., A, 312, 118 (2008). 

[21] Y.J.  Lee, J.C. Jung, S. Park, J.G. Seo, S.–H. Baeck, J.R. Yoon, J. Yi, I.K. Song, Curr. Appl. Phys., 10, 947 (2010).

[22] M. Haro, G. Rasines, C. Maclas, C.O. Ania, Carbon, 49, 3723 (2011).

[23] C. Moreno-Castilla, M.B. Dawidziuk, F. Carrasco-Marín, E. Morallón, Carbon, 50, 3324 (2012).

[24] X. Lu, J. Shen, H. Ma, B. Yan, Z. Li, M. Shi, M. Ye, J. Power Sources, 201, 340 (2012).

[25] Y.J. Lee, H.W. Park, S. Park, I. Song, Curr. Appl. Phys., 12, 233 (2012).

[26] X. Li, B. Wei, Nano Energy, 1, 479 (2012).

[27] S.L. Candelaria, Y. Shao, W. Zhou, X. Li, J. Xiao, J.G.  Zhang, Y. Wang, J. Liu, J. Li, G. Cao, Nano Energy, 1, 195 (2012). 

[28] R.W. Murray, A.J. Bard, in “Electroanalytical Chemistry”, Ed., Dekker, New York, 1984, 13, p. 191.

[29] A.J. Bard, L.R. Faulkner, “Electrochemical Methods. Funda- mental and Applications”, J. Wiley, New York, 1980.

[30] M. Baia, L.C. Cotet, L. Baia L. Barbu-Tudoran, V. Cosoveanu,V. Danciu, J. Popp, J. Optoelectron. Adv. Mat. - Symposia, 2, 9 (2010).

[31] D. Gligor, A. Maicaneanu, A. Walcarius, Electrochim. Acta, 55, 4050 (2010).