Enhanced Capacitance of Microwave-assisted Functionalized Ordered Mesopourous Carbon for Supercapacitors

Enhanced Capacitance of Microwave-assisted Functionalized Ordered Mesopourous Carbon for Supercapacitors

B. Portales-MartínezR.G. González-Huerta J.M. Domínguez-Esquivel C.A. Cortés-Escobedo 

Centro de Investigación e Innovación Tecnológica del IPN, Cda. CECATI S/N Col. Sta. Catarina, Del. Azcapotzalco, México, D. F. CP 02250

Escuela Superior de Ingeniería Química del IPN, Laboratorio de Electrocatálisis, Unidad Profesional Adolfo López Mateos, México, D. F. CP 07738

Instituto Mexicano del Petróleo, Eje Central Lázaro Cárdenas Norte 152, Col. San Bartolo Atepehuacan, México, D. F. CP 07730

Corresponding Author Email: 
ben_portales_mtz@hotmail.com
Page: 
203-209
|
DOI: 
https://doi.org/10.14447/jnmes.v15i3.66
Received: 
27 November 2011
| |
Accepted: 
9 February 2012
| | Citation
Abstract: 

The electrochemical capacitance for a double layer of ordered mesoporous carbon (OMC) nanofibers functionalized under differing conditions is presented. OMC nanofibers were prepared using the molding method from SBA-15 and sucrose. Functionalisation was performed using varying HNO3concentrations at 110°C and 120°C assisted by microwave radiation over 3 minutes. The transmission electron micrographs of the resulting fibers are reported. The capacitance, surface area and functional groups as functions of the acidity and heat treatment were analysed via cyclic voltammetry, nitrogen adsorption-desorption, and X-ray photoelectron spectroscopy, respectively. Ordered nanofibers treated with 7.7 M HNO3 at 110°C exhibited the highest capacitance.

Keywords: 

ordered mesoporous carbon, functionalisation, capacitance, supercapacitors, EDLC

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

The support of CONACYT and IPN-SIP through projects CB-157925 SIP MULTI-1338, SIP 20120475 and SIP 20120445 is gratefully acknowledged.

  References

[1] G. Gryglewicz, J. Machnikowski, E. Lorenc-Grabowska, G. Lota, E. Frackowiak, Electrochim. Acta, 50, 1197 (2005).

[2] X. Dong, W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, and J. Shi, J. Phys. Chem. B, 110, 6015 (2006).

[3] Y. Lei, C. Fournier, J.-L. Pascal, F. Favier, Micropor. and Mesopor. Mater., 110, 167 (2008).

[4] D.-W. Wang, F. Li, Z.-G. Chen, G. Q. Lu, and H.-M. Cheng., Chem. Mater., 20, 7195 (2008).

[5] H. Pan, J. Y. P. Feng, Nanoscale Res. Lett., 5, 654 (2010).

[6] B.E. Conway, “Electrochemical Supercapacitors, Scientific Fundamentals and Technological Applications”, Kluwer Academic, New York, 1999.

[7] H. Li, H. Xi, S. Zhu, Z. Wen, R. Wang, Micropor. Mesopor. Mater., 96 357 (2006).

[8] Guha, W. Lu, T.A. Zawodzinski, D.A. Schiraldi, Carbon, 45, 1506 (2007).

[9] A.-H. Lu, W. Li, Z. Hou, F. Schüth, Chem. Commun.,10, 1038 (2007).

[10] M.J. Lázaro, L. Calvillo, E.G. Bordejé, R. Moliner, R. Juan, C.R. Ruiz, Micropor. Mesopor. Mater., 103, 158 (2007).

[11] P.A. Bazu?a, A.-H. Lu, J.-J. Nitz, F. Schüth, Micropor. Mesopor. Mater., 108, 266 (2008)

[12] M. Jaroniec, J. Gorka, J. Choma, A. Zawislak, Carbon, 47, 3034 (2009).

[13] K. Jurewicz, C. Vix-Guterl, E. Frackowiak, S. Saadallah, M. Reda, J. Parmentier, J. Patarin, F. Béguin, J. of Phys. and Chem. of Solids, 65, 287 (2004).

[14] H.Y. Liu, K.-P. Wang, H. Teng, Carbon, 43, 559 (2005).

[15] A.B. Fuertes, G. Lotaa, T.A. Centeno, E. Frackowiak. Electrochim. Acta, 50, 2799 (2005).

[16] W. Xing, S.Z. Qiao, R.G. Ding, F. Li, G.Q. Lu, Z.F. Yan, H.M. Cheng, Carbon, 44, 216 (2006).

[17] J. Chmiola, G. Yushin, Y. Gogotsi, C. Portet, P. Simon, P.L. Taberna, Science, 313, 1760 (2006).

[18] H. Li, H. Xi, S. Zhu, Z. Wen, R. Wang, Micropor. and Mesopor. Mater., 96, 357 (2006).

[19] H. Li, R. Wang, R. Cao, Micropor. and Mesopor. Mater., 111, 32 (2008).

[20] E. Juaristi, “Aplicaciones de microondas en química y en biología”, El Colegio Nacional, México, 2009.

[21] D. Zhao, J. Sun, Q. Li, G.D. Stucky, Chem. Mater., 12, 275 (2000).

[22] S. Jun, S.H. Joo, R. Ryoo, M. Kruk, M. Jaroniec, Z. Liu, J. Am. Chem. Soc., 122, 10712 (2000).

[23] R. González Cruz, O. Solorza Feria. J. Solid State Electrochem., 7, 289 (2003).

[24] G. Leofanti, M. Padovan, G. Tozzola, B. Venturelli, Catal. Today, 41, 207 (1998).

[25] S.M. Lee, “Handbook of Composite Reinforcements”, Palo Alto CA: VCH Publishers Inc 1993.

[26] W.H. Lee, W.H. Kim, W.J. Lee, J.G. Lee, R.C. Haddon, P.J. Reucroftd, Appl. Surf., 181, 121 (2001).

[27] D. Briggs, G. Beamson, Anal. Chem., 64, 1729 (1992).

[28] H. Ago, T. Kugler, F. Cacialli, W.R. Salaneck, S.P. Shaffer, A.H. Windle, J. Phys. Chem. B, 103, 8116 (1999).

[29] G. Nansé, E. Papirer, P. Fioux, F. Moguet, A. Tressaud, Carbon, 35, 175 (1997).

[30] Proctor, P. Sherwood, Anal. Chem. 54, 13 (1982).

[31] S. Jackson, R. Nuzzo, Appl. Surf. Sci., 90, 195 (1995).

[32] J. F.Watts, J.Wolstenholme, “An Introduction to Surface Analysis b XPS and AES”, West Sussex Englan: John Wiley & Sons Ltd 2003.