Hydrogen Storage on Scandium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory

Hydrogen Storage on Scandium-Coated Toroidal Carbon Nanostructure C120 modeled with Density Functional Theory

A. Cruz-Torres F. de L. Castillo-Alvarado  J. Ortiz-Lopez  J.S. Arellano 

Escuela Superior de Física y Matemáticas, Instituto Politécnico Nacional. Edificio 9, Unidad Profesional Adolfo López Mateos, Col. San Pedro Zacatenco, Delegación Gustavo A. Madero, CP 07738, México, D.F. México.

Universidad Autónoma Metropolitana Azcapotzalco. Departamento de Ciencias Básicas. Av. San Pablo 180, Col. Reynosa Tamaulipas, C.P. 02200, México D.F. México. 

Corresponding Author Email: 
jsap@correo.azc.uam.mx
Page: 
223-228
|
DOI: 
https://doi.org/10.14447/jnmes.v14i4.94
Received: 
December 21, 2010
| |
Accepted: 
May 09, 2011
| | Citation
Abstract: 

Ab initio density functional calculations were performed on a toroidal carbon C120 nanostructure doped from one to ten Sc atoms bonded to its outer surface. These calculations are based on DFT with the generalized gradient approximation PW91 (Perdew and Wang) as implemented in the Materials Studio v.4.3 code. The Dmol3 module was used to calculate, among others, total energies, charge density, HOMO-LUMO and Mulliken population analysis. On the basis of these results, it is possible to propose that a single Sc atom is able to adsorb up to 6 H2 molecules. Therefore the study was extended for a system with 10 Sc atoms, which can adsorb up to 60 H2 molecules. This leads to 6.01 wt %, which fulfils the current requirement (6 wt %, at 2010, specified by US Department of Energy (DOE)). Accordingly, the scandium-coated toroidal carbon C120 nanostructure is a good candidate for H2 storage with moderate adsorption energy.

Keywords: 

Toroidal C120 Carbon Nanostructure, Density Functional Theory, Hydrogen storage, Scandium-Coated Toroidal Carbon Nanostructure. 

1. Introduction
2. Method
3. Results and Discussion
4. Summary
5. Conclusions
6. Acknowledgments

The authors would like to express their sincere thanks to Dr. Annia Galano for her valuable help. This work was possible thanks to the financing of CONACyT projects Numbers 25218 and 57262. 

  References

[1] Dunlap B. I., Phys. Rev., B, 46, 1933 (1992).

[2] Sigeo Ihara and Satoshi Itoh, Phys. Rev., B, 47, 12908 (1993).

[3] Guangfen Wu, Jinlan Wang, Xiuyun Zhang, and Liyan Zhu, J. Phys. Chem. C, 113, 7052 (2009).

[4] Qiang Sun, Qian Wang and Puru Jena, Appl. Phys. Lett., 94, 013111 (2009).

[5] Qian Wang, Qiang Sun, Puru Jena, and Yoshiyuki Kawazoe, J. Chem. Theory Comput., 5, 374 (2009).

[6] T. Yildirim, Jorge Íñiguez, and S. Ciraci, Physical Review B 72, 153403 (2005).

[7] B. Delley, J. Chem. Phys., 92, 508 (1990).

[8] B. Delley. J. Chem.  Phys., 113, 7756 (2000).

[9] Dmol3 in Materials Studio v4.3, Accelrys (USA).

[10]Kroto H.W.,  Nature, 329, 529 (1987).

[11]Schmalz T.G., Seitz W.A., Klein D.J., Hite G.E., J. Am. Chem. Soc., 110, 1113 (1988).

[12]J.P. Perdew and Y. Wang, Phys. Rev. B, 45, 13244 (1992).

[13]A. Cruz-Torres, F. de L. Castillo-Alvarado, J. Ortíz-López, J.S. Arellano, Int. J. Quantum Chem., 110, 2495 (2010).

[14]Tiezhu Meng, Chong-Yu Wang, Shan-Ying Wang, Chemical Physics Letters, 437, 224 (2007).

[15]F. de L. Castillo-Alvarado, J. Ortíz-López, J.S. Arellano, A. Cruz-Torres, Advances in Science and Technology, 72, 188 (2010). ©(2010) Trans Tech Publications, Switzerland doi:10.4028/www.scientific.net/AST.72.188.

[16]Bing Huang, Miao Liu, Ninghai Su, Jian Wu, Wenhui Duan, Bing-lin Gu and Feng Liu, Physical Review Letters, 102, 166404 (2009).