Research on Low Temperature Performance of the F-doped LiFePO4/C Cathode Materials

Research on Low Temperature Performance of the F-doped LiFePO4/C Cathode Materials

Borong Wu |Ying Zhang  Ning Li Chunwei Yang Zhaojun Yang Cunzhong Zhang Feng Wu 

Department of Environment and Energy Resources, Beijing Institute of Technology, Beijing 100081

Corresponding Author Email:
8 December 2010
7 January 2011
8 April 2011
| Citation

F-doped LiFePO4/C cathode materials were synthesized by two-step solid-state reaction route. The F-doped LiFePO4/C increases the intrinsic conductivity, the diffusion of lithium ions, also improves the high-rate and low-temperature performances of LiFePO4. The SEM images reveal some small morphology changes of the two kinds of the materials, so the improved properties may not due to grain size changes but crystal structure changes. The F-doped material has a higher capability at low temperature. At -20°C, with the rate of 0.5C, the discharge capacity was 82mAhg-1, higher than that of undoped material(65mAhg-1) and the result is better than the previous study[17](65mAhg-1 at the rate of 0.3C), and the disparity would enlarge with the rate increased. The CV plots indicate that the doped material reveals less degree of polarization. F-doping sample improves the electrical conductivity of material, accelerating the process of Li+ deintercalation, therefore, improving the electrochemical performances at low temperature.


LiFePO4, fluorine doping, low-temperature

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusion

[1] A.K. Padhi, K.S. Nanjundaswamy, J.B. Goodenough, J. Electrochemical Soc. , 144, 1188 (1997).

[2] D. Jugovic, D. Uskokovic, J. Power Sources, 190, 538 (2009).

[3] D.D. MacNeil, Z.H. Lu, Journal of Power Sources, 108, 8 (2002).

[4] M. Takahashi, H. Ohtsuka, J. Electrochemical Soc., 152, A899 (2005).

[5] S. Franger, C. Benoit, J. Physics and Chemistry of Solids, 67, 1338 (2006).

[6] S.Y. Chung, J.T. Bloking, Nature Materials, 1, 123 (2002).

[7] Gaberscek, Miran, Dominko, Robert, Electrochem. Commun., 9 , 2778 (2007).

[8] Kuppan Saravanan, M.V. Reddy, Palani Balaya, Hao Gong, B.V.R. Chowdari, Jagadese J. Vittal, Mater. Chem., 19, 605 (2009).

[9] S. Yonezawa, M. Yamasaki, J. Fluorine Chemistry, 125, 1657 (2004).

[10] K. Kubo, S. Arai, S. Yamada, J. Power Sources, 81-82, 599 (1999).

[11] G.G. Amatucci, N. Pereira, J. Electrochem. Soc., 148, A171 (2001).

[12] G.H. Kim, J.H. Kim, J. Electrochem. Soc., 152, A1707 (2005).

[13] X. Zhou, X.B. Zhao, H.M. Yu, J.Z. Hu, J. Inorganic materials, 23, 587 (2008).

[14] X.Z. Liao, Y.S. He, Z.F. Ma, J. Power Sources, 174, 720 (2007).

[15] L. Yang, L.F. Jiao, J. Solid State Electrochem., 14, 1001 (2010).

[16] C.W. Yang, R.X. Zhang, X.G. Hu, J.S. Liu, J.C. Xia, Chinese Battery Industry, 14, 125 (2009).

[17] X.M. Feng, J.J. Zhang, R.F. Li, Z.J. Li , Battery?Bimonthly, 39, 37 (2009).

[18] M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Phys. Chem. C, 111, 11712 (2007).

[19] Sakunthala, M.V. Reddy, S. Selvasekarapandian, B.V.R. Chowdari, P. Christopher Selvin, J. Phys. Chem. C, 114, 8099 (2010).

[20] M.V. Reddy, G.V. Subba Rao, B.V.R. Chowdari, J. Power Sources, 195, 5768 (2010).

[21] Y. Cui, X. Zhao, G. Ruisong, Electrochimica Acta, 55, 922 (2010).

[22] A.S. Andersson, B. Kalska, L. Haggstrom, J.O. Thomas, Solid State Ionics, 130, 41 (2000).

[23] P.P. Prosini, M. Lisi, D. Zane, M. Pasquali, Solid State Ionics, 148, 45 (2002).