TiO2 Nanotubes Promoted PT-NI/C Catalyst with Low PT Content as Anode Catalyst for Direct Ethanol Fuel Cells

TiO2 Nanotubes Promoted PT-NI/C Catalyst with Low PT Content as Anode Catalyst for Direct Ethanol Fuel Cells

Lei Shen Qi-Zhong JiangTao Gan Min Shen F.J. Rodriguez Varela A.L. Ocampo Zi-Feng Ma 

Department of Chemical Engineering, Shanghai Jiao Tong University, Shanghai ,China, 200240

School of Chemical, Biological, and Materials Engineering, Sarkeys Energy Center, University of Oklahoma, Norman, U.S.A, 73019

Grupo de Recursos Naturales y Energéticos, Cinvestav Unidad Saltillo, Carr. Saltillo-Monterrey Km. 13, Ramos Arizpe, Coahuila, 25900, México

Facultad de Química, Departamento de Química Analítica, Universidad Nacional Autónoma de México, D.F. 04510, México, México

Corresponding Author Email: 
qzjiang@sjtu.edu.cn
Page: 
205-211
|
DOI: 
https://doi.org/10.14447/jnmes.v13i3.160
Received: 
20 November 2009
| |
Accepted: 
27 January 2010
| | Citation
Abstract: 

TiO2 nanotubes (TiO2NTs) are added into a low-platinum content Pt-Ni/C catalyst to improve its catalytic activity for the ethanol oxidation reaction (EOR). The promotion effect of TiO2NTs on Pt-Ni/C catalyst is studied. The results obtained by cyclic voltmmetry (CV) and chronoamperometry indicate that TiO2NTs can greatly enhance the catalytic activity of the Pt-Ni/C catalyst. Compared with a commercial Pt-Ru/C catalyst, the Pt-Ni-TiO2NT/C catalyst has a larger electrochemical active surface (EAS) and shows lower onset poten- tial for the EOR. The elemental composition and electronic structure of the catalyst are characterized by EDX, ICP-OES, XRD and XPS. Morphological properties of these catalysts are characterized by HRTEM. It can be concluded that the presence of TiO2NTs can retain more of the Pt metallic species and provide more hydroxides groups, which results in a facile removal of reaction intermediates and lower onset oxidation potentials.

Keywords: 

DEFCs; Pt-Ni/C catalyst; TiO2 nanotubes; Low Platinum; Anode catalyst

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgments

The authors are grateful for the financial support of this work by the National 863 Program (2007AA05Z145), National Science Foundation of China (20776085), Science and Technology Commission of Shanghai Municipality (07JC14024, 09XD1402400) and the support from Instrumental Analysis Centre of Shanghai Jiao Tong University. The authors also wish to acknowledge the National Council for Science and Technology (Conacyt-Mexico) for financial support through the Bilateral Collaboration program.

  References

[1] W. Zhou, Z. Zhou, S. Song, W. Li, G. Sun, P. Tsiakaras and Q. Xin, Appl. Catal. B: Env., 46, 273 (2003).

[2] E. Antolini, J. Power Sources, 170, 1 (2007).

[3] S. Song, P. Tsiakaras, Appl. Catal. B: Env.,, 63, 187 (2006).

[4] E. Peled, T. Duvdevani, A. Aharon, Electrochem. Solid-State Lett., 4, A38 (2001).

[5] C. Roth, A.J. Papworth, I. Hussain, R.J. Nichols, D.J. Schiffrin, J. Electroanal. Chem., 581, 79 (2005).

[6] S. Lj. Gojkovic, T.R. Vidakovic, D.R. Durovic, Electrochim. Acta, 48, 3607 (2003).

[7] C. Lu, C. Rice, R.I. Masel, P.K. Babu, P.Waszczuk, H.S. Kim, E. Oldfield, A. Wieckowski, J. Phys. Chem. B, 106, 9581 (2002).

[8] P.Waszczuk, G.-Q. Lu, A. Wieckowski, C. Lu, C. Rice, R.I. Masel, Electrochim. Acta, 47, 3637 (2002).

[9] T. Frelink, W. Visscher, J.A.R. Van Veen, Surf. Sci., 335, 353 (1995).

[10] S.A. Lee, K.W. Park, J.H. Choi, B.K. Kwon, Y.E. Sung, J. Electrochem. Soc., 149, A1299 (2002).

[11] J. Kua, W.A. Goddard Ш, J. Am. Chem. Soc., 121, 10928 (1999).

[12] F.J. Rodriguez-Nieto, T.Y. Morante-Catacora, C.R. Cabrera, J. Electroanal. Chem., 571, 15 (2004).

[13] L.H. Jiang, G.Q. Sun, Z.H. Zhou, W.J. Zhou, Q. Xin, Catal. Today, 93–95, 665 (2004).

[14] U.A. Paulus, A. Wokaun, G.G. Scherer, T.J. Schmidt, V. Stamenkovic, V. Radmilovic, N.M. Markovic, P.N. Ross, J. Phys. Chem. B, 106, 4181 (2002).

[15] K.W. Park, J.H. Choi, B.K. Kwon, S.A. Lee, Y.E. Sung, H.Y. Ha, S.A. Hong, H.S. Kim, A. Wieckowski, J. Phys. Chem., B, 106, 1869 (2002).

[16] T.C. Deivaraj, W.X. Chen, J.Y. Lee, J. Mater. Chem., 13, 2555 (2003).

[17] Z.B. Wang, G. P. Yin, J. Zhang, Y.C. Sun, P.F. Shi , J. Power Sources, 160, 37 (2006).

[18] E. Ribadeneira, B.A. Hoyos, J. Power Sources, 180, 238 (2008).

[19] E. Spinacé, M. Linardi, A. Oliveira, Electrochem. Commun., 7, 365 (2005).

[20] D.B. Chu, X.F. Zhou, C.J. Lin, J.G. Tan, Direct Electrochemi-Figure 10. TEM image of Pt-Ni-TiO2NT/C catalyst cal Synthesis of Metal Alkoxides, Chem. J. Chinese U., 2000, 21 (1): 133~135.

[21] H.Q. Song, X.P. Qiu, F.S. Li, W.T. Zhu, L.Q. Chen, Electrochem. Commun., 9, 1416 (2007).

[22] B.E. Hayden, D.V. Malevich, D. Pletcher, Electrochem. Commun., 3, 395 (2001).

[23] F. Hu, F. Ding, S. Song, P.K. Shen, J. Power Sources, 163, 415 (2006).

[24] J.M. Macak, P.J. Barczuk, H. Tsuchiya, M.Z. Nowakowska, A. Ghicov, M. Chojak, S. Bauer, S. Virtanen, P.J. Kulesza, P. Schmuki, Electrochem. Commun., 7, 1417 (2005).

[25] X. Wu, Q.Z. Jiang, Z. Ma, L.Q. Hu, Chinese J. Power Sources, 31, 713 (2007).

[26] Q.Z. Jiang, X. Wu, M. Shen, Z. Ma, X.Y. Zhu, Catal. Lett., 124, 434 (2008).

[27] X. Wu, Q.Z. Jiang, Z.F. Ma, M. Fu, W.F. Shangguan, Solid State Commun., 136, 513 (2005).

[28] A. Pozio, M. De Francesco, A. Cemmi, F.Cardellini, L. Giorgi, J. Power Sources, 105, 13 (2002).

[29] J. Luo, P.N. Njoki, Y. Lin, D. Mott, L. Wang, C.J. Zhong, Langmuir, 22, 2892 (2006).

[30] M.P. Hogarth, G.A. Hards, Plat Met Rev, 40, 150 (1996).

[31] V. Radmilović, H.A. Gasteiger, P.N. Ross Jr, Journal of Catalysis, 154, 98 (1995).

[32] <http://www.phy.cuhk.edu.hk/~surface/XPSPEAK\>.

[33] A. Seo, J.S. Lee, K. Han, H. Kim, Electrochem. Acta., 52, 1603 (2006).

[34] Y. Zhao, Y.F. En, L.Z. Fan, Y.F. Qiu, S.H. Yang, Electrochem. Acta., 52, 5873 (2007).

[35] M.A.Garcia-Contreras,S.M. Fernandez-Valverde, J.R. Vargas-Garcia, M.A.Cortes-Jacome, J.A. Toledo-Antonio, C. Angeles-Chavez, Int. J. Hydrogen Energy, 33, 6672 (2008).