Synthesis of Mg doped LaCrO3 Nano Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application

Synthesis of Mg doped LaCrO3 Nano Powders by Sol-Gel Process for Solid Oxide Fuel Cell (SOFC) Application

M. GhouseA. Al-Musa Y. Al-Yousef M.F. Al-Otaibi 

Energy Research Institute, King Abdulaziz City for Science and Technology (KACST), PO. Box. 6086, Riyadh 11442, Kingdom of Saudi Arabia

Corresponding Author Email: 
msheikh@kacst.edu.sa
Page: 
99-106
|
DOI: 
https://doi.org/10.14447/jnmes.v13i2.176
Received: 
13 April 2009
|
Accepted: 
20 January 2010
|
Published: 
20 January 2010
| Citation

OPEN ACCESS

Abstract: 

Magnesium doped lanthanum chromate (LaCrO3) nano ceramic powders were prepared using Sol-Gel process for solid oxide fuel cell (SOFC) applications. This powder is considered as interconnect material for SOFC application. This interconnect powder was prepared using La(NO3)3·6H2O, 4MgCO3·Mg(OH)2·5H2O, (NH4)2Cr2O7 and Cr(NO3)3·9H2O chemicals in which the chelating agent was citric acid and the dispersant agent was ethylene glycol. While physical Characterization for the powders was carried out using SEM / EDS, XRD techniques, TGA and DTA techniques were used for thermal characterization. The SEM images reveal that the particle size of La0.7Mg0.3CrO3 powders achieved by Sol-Gel process is in the range of ~50-200nm. The EDS study indicates that the carbon content is high in the as prepared powders comparing to the calcined powders. The powders prepared using (NH4)2Cr2O7 is more cost effective than using Cr(NO3)3·9H2O since it also acts as fuel. The XRD analysis reveal the presence of La0.7Mg0.3CrO3 and MgCr2O4 phases. The TGA plots depict that there is no further weight loss after reaching the temperatures 350oC and 575oC for the LMC gels prepared using AD and Cr-N respectively indicating the complete combustion and obtaining oxide phases.

Keywords: 

Sol-Gel, Ammonium dichromate (AD) , Chromium nitrate (Cr-N), Interconnect, XRD, TGA and DTA.

1. Introduction
2. Experimental
3. Results and Discussion
4. Conclusions
Acknowledgements

Authors thank Dr. Naif M. Al-Abbadi, Director, Energy Research Institute, King Abdulaziz City for Science and Technology (KACST), Riyadh, Saudi Arabia for his encouragement and support during the course of this work.

Author's thanks are due to Mr. Raed A. Al-Gumhan and Mr. M. Al-Saadan for their assistance during the experiments.

Also, author's thanks are due to Atomic Energy Research Institute (AERI), KACST for providing the XRD patterns and TGA/DTA plots of the Interconnect powder/gel samples.

Also, author's thanks are due to Nano Technology Institute, KACST for providing the SEM images of the Interconnect powder samples.

  References

[1] S. C. Singhal , K. Kendell, Elsevier, Oxford, UK, (2003).

[2] T. -L. Wen, D. Wang, M. Chen, H. Tu, Z. Lu, Z. Zhang, H. Nie, W. Huang, Solid State Ionics, 148, 513 (2002).

[3] N. Q. Minh, J. Amer. Ceramic. Soc., 76, 563 (1993).

[4] Natsuko Sakai, Teruhisa Horita, Harumi Yokokawa, Masayuki Dokiya, Tatsuya Kawada, Solid State Ionics, 86, 1273 (1996).

[5] Teruhisa Horita, Masahiko Ishikawa, Katsuhiko Yamaji, Natsuko Sakai, Harumi Yokokawa, Masayuki Dokiya, Solid State Ionics, 108, 383 (1998).

[6] K. Azegami, M. Yoshinaka, K. Hirota, O. Yamaguchi, Solid State Commun., 112, 281 (1999).

[7] S. P. Simner, J. S. Hardy, J. W. Stevenson, and T. R. Armstrong, J. Mat. Science, 19, 863 (2000).

[8] http:// scholar.ilib.cn/A-zgxtxb-e2004z3030.html.

[9] Harumi Yokokawa, Teruhisa Horita, Natsuko Sakai, Tatsuya Kawada, Masayuki Dokiya, Yoshihiro Takai, Minoru Todoki, Thermochmica Acta, 129 (1995).

[10] W. Z. Zhu, S. C. Deevi, Materials Science and Engineering A348, 227 (2003).

[11] http://www.chemat.com/html/solgel.html

[12] Feng Zheng, Rajendra K. Bordia, Larry R. Pederson, Materials Research Bulletin, 39, 141 (2004).

[13] T. Ishihara, H. Mtsuda, Y. Takita, J. Am. Chem. Soc., 116, 3801 (1994).

[14] A. Das Sharma, Saswati Ghosh, R. N. Basu, H. S. Maiti, http://met.iisc.ernet.in/~nano2006/AbstractSubmissions/ThemeA-Complete.html

[15] http://azom.com/details.asp?ArticleID=157

[16] Xifeng Ding, Yingjia Liu, Ling Gao, Lucun Guo, Journal of Alloys and Compounds, 425, 318 (2006).

[17] San Ping Jiang, Li Liu, Khuong P. Ong, Ping Wu, Jian Li, Jian Pu, Journal of Power Sources, 176, 82 (2008).

[18] Tom Mathews, Nadine Rabu, J. R. Sellar, B. C. Muddle, Solid State Ionics, 128, 111 (2000).

[19] Jin-Ho Kim, Han-Ill Yoo, Solid State Ionics, 140, 105 (2001).

[20] Jin-Ho Kim, Han-Ill Yoo, Journal of Solid State Chemistry 139, 135 (1998).

[21] P. Duran, J. Tartaj, F. Capel, C. Moure, Journal of European Ceramic Society, 24, 2619 (2004).

[22] M. Ghouse, M. F. Al-Otaibi, A. Al-Musa, G. Al-Mutairi, Proceedings of ICCE-16, Kunming, China 19-26 July 2008.

[23] M. Ghouse, Y. Al-Yousef, A. Al-Musa, M. F. Al-Otaibi, World Journal of Engineering, 6(1), 149 (2009).

[24] M. Ghouse, Y. Al-Yousef, A. Al-Musa, M. F. Al-Otaibi, International Journal of Hydrogen Energy, in press (2010).

[25] Saswati Ghosh, A. Das Sharma, R. N. Basu and H. S. Maiti, Electrochemical and Solid-State Letters, 9(11), A516 (2006).

[26] R. D. Shannon, Acta Crystallography A, 32, 751 (1976).

[27] Masashi Mori, Tohru Yamamoto, Takayuki Ichikawa, Yasuo Takeda, Solid State Ionics, 148, 93 (2002).