Synthesis and Characterization of Ru Enriched Pt-Ru Nanostructured Catalyst Prepared by Carbonyl-metal Complex Reduction for DMFC Redox Reactions

Synthesis and Characterization of Ru Enriched Pt-Ru Nanostructured Catalyst Prepared by Carbonyl-metal Complex Reduction for DMFC Redox Reactions

S.A. GamboaM.A. García F. Ginez 

Departamento de Materiales Solares, Centro de investigación en Energía, Universidad Nacional Autónoma de México, Xochicalco s/n, Centro. 62580. Temixco, Morelos. México

Corresponding Author Email: 
sags@cie.unam.mx
Page: 
41-46
|
DOI: 
https://doi.org/10.14447/jnmes.v13i1.194
Received: 
29 July 2009
| |
Accepted: 
N/A
| | Citation
Abstract: 

Nanostructured Pt-Ru/C was synthesized by reducing the carbonyl-metal complex precursors. A modified two-step synthesis from conventional carbonyl metal reduction process was used for obtaining highly enriched Ru catalytic nanoparticles distributed onto normal carbon Vulcan. Structural characteristics of the synthesized catalysts were analyzed by transmission electron microscopy. A particle size distribution of 1.57 ± 0.09 nm was obtained for the synthesized catalyst. The chemical composition analysis showed Ru enriched Pt-Ru clusters deposited on Vulcan. The electrochemical characterization showed adequate catalytic properties to promote redox reactions in a direct methanol fuel cell environment.

Keywords: 

Pt-Ru nanoparticles, DMFC, methanol oxidation, oxygen reduction, carbonyl.

1. Introduction
2. Experimental Details
3. Results
4. Conclusion
Acknowledgements

Authors want to thank Dr. Hilda Esparza-Ponce from Centro de Investigación en Materiales Avanzados/Laboratorio Nacional de Nanotecnología-Mexico for electron microscopy facilities. This work was supported by 45866-Y basic science CONACYT National Grant.

  References

[1] M.K. Jeon, Y. Zhang, P.J. McGinn, Electrochimica Acta, 54(2009), 2837.

[2] E. Antolini, Appl. Catal. B Environ. 74(2007), 337.

[3] U.B. Demirci, J. Power Sources, 173(2007), 11.

[4] J. Liu, J. Cao, Q. Huang, X. Li, Z. Zou, H. Yang, J. Power Sources, 175(2008), 159.

[5] M.K. Jeon, J.Y. Won, K.R. Lee, S.I. Woo, Electrochem. Commun. 9(2007), 2163.

[6] P. Strasser, J. Comb. Chem. 10(2008), 216.

[7] S. Pasupathi, V. Tricoli, Solid State Electrochem. 12(2008), 1093.

[8] J.S. Cooper, P.J. McGinn, J. Power Sources, 163(2006), 330.

[9] M.K. Jeon, P.J. McGinn, J. Power Sources, 188(2009), 432.

[10] M. Watanabe, M. Uchida, S. Motoo, J. Electroanal. Chem. 229(1987), 395.

[11] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, J. Phys. Chem. B. 108(2004), 8234.

[12] J.C. Huang, Z.L. Liu, C.B. He, L.M. Gan, J. Phys. Chem. B. 109(2005), 16644.

[13] C. Coutanceau, S. Brimaud, C. Lamy, J.M. L´eger, L. Dubau, S. Rousseau, F. Vigier, Electrochimica Acta, 53 (2008) 6865

[14] Z. Liu, X.Y. Ling, B. Guo, L. Hong, J.Y. Lee, J. Power Sources, 167(2007), 272.

[15] H.A. Gasteiger, N. Markovic, P.N. Ross, E.J. Cairns, J. Electrochem. Soc., 141(1994), 1795.

[16] T.J. Schmidt, H.A. Gasteiger, R.J. Behm, Electrochem. Commun. 1(1999), 1.

[17] W. Ma, J. Wu, Ch. Shen, H. Tang, M. Pan, J. appl. Electrochem. 38(2008), 875.