Effects of Thickness and Annealing on the Structural and Optical Properties of Chemical Bath Deposited CdS Thin Films

Effects of Thickness and Annealing on the Structural and Optical Properties of Chemical Bath Deposited CdS Thin Films

Rodrigo Cue S. S. VelumaniP.J. Sebastian J.A. Chávez-Carvayar 

Tecnologico de Monterrey, E.Garza Sada #2501, C.P. 64849, Monterrey, N.L., México

Ingeniería Eléctrica (SEES), CINVESTAV, Zacatenco, C. P. 07360, México D. F., México

CIE-UNAM, Privada Xochicalco S/N, C. P. 62580, Temixco, Morelos, México

Instituto de Investigaciones en Materiales, UNAM, México D.F., México

Corresponding Author Email: 
velu@cinvestav.mx; vels64@yahoo.com
Page: 
7-14
|
DOI: 
https://doi.org/10.14447/jnmes.v13i1.189
Received: 
29 July 2009
| |
Accepted: 
4 August 2009
| | Citation
Abstract: 

Present work focuses on the preparation and characterization of II–VI thin film semiconductor compound Cadmium Sulfide (CdS), commonly used as window layer in polycrystalline thin-film photovoltaic cells. CdS thin films were prepared by chemical bath deposition (CBD) in six different thicknesses and subjected to heat treatment at five different temperatures in nitrogen atmosphere, in order to find the appropriate film for perfect window layer in copper indium diselenide (CIS)/CdS photovoltaic cells. Structural and optical characterizations were carried out by X-ray diffraction and UV-VIS-NIR spectrometer respectively. Both the Hawleyite (cubic) and Greenockite (hexagonal) phases were observed, the latter being most predominant. Films show good transmittance in visible region and the band gap was found to decrease with the increase in thickness and annealing temperature.

Keywords: 

CdS, Thin films, crystal structure, heat treatment.

1. Introduction
2. Experimental Details
3. Results and Discussion
4. Conclusions
Acknowledgment

The work carried out at CINVESTAV-CMTY has been supported by Catedra of nanoelectronics. Authors also like to thank Luis Ixtlilco Cortés from CIE UNAM, Carlos Flores Morales form IIM UNAM and Vidhya Bhojan from ITESM for their useful help during this work.

  References

[1] Zhibing He, Gaoling Zhao, Wenjian Weng, Piyi Du, Ge Shen, Gaorong Han, Vacuum 79 (2005) 14-18.

[2] K. Senthil, D. Mangalaraj, Sa.K. Narayandass, R. Kesavamoorthy, G.L.N. Reddy, B. Sundaravel, Matter 304 (2001) 175-180.

[3] Jae-Hyeong lee, Dong-Jin Lee, Thin Solid Films 515 (2007) 6055-6059.

[4] Byung-Sik Moon, Jae-Hyeong Lee, Hakkee Jung, Thin Solid Films 511 – 512 (2006) 299 – 303.

[5] J. Hiie, T. Dedova, V. Valdna, K. Muska, Thin Solid Films 511-512 (2006) 443-447.

[6] V. Krishna Kumar, K. Ramamurthi, E. Elangovan, Solid State Communications 132 (2004) 673-677.

[7] Joo Won Choi, A. Bhupathiraju, M. A. Hasan, John M. Lannon, Crystal Growth 255 (2003) 1-7.

[8] S. Petillon, A. Dinger, M. Grün, M. Hetterich, V. Kazukauskas, C. Klingshirn, J. Liang, B. Weise, V. Wagner and J. Geurts, Crystal Growth 201-202 (1999) 457-460.

[9] K. Premaratne, S. N. Akuranthilaka, I. M. Dharmadasa and A. P. Samantilleka, Renewable Energy 29 (2003) 549-557.

[10] N. W. Duffy, D. Lane, M. E. Ôzsan, L. M. Peter, K. D. Rogers, R. L. Wang, Thin Solid Film 361-362 (2000) 314-320.

[11] Joel Pantoja Enríquez, Xavier Mathew, Solar Energy Materials and Solar Cells 76 (2003) 313-322.

[12] G. Sasikala, P. Thilakan, C. Subramanian, Solar Energy Materials and Solar Cells 62 (2000) 275.

[13] R. Grecu, E. J. Popovici, M. Ladar, L. Pascu, E. Indreaa, J. Optoelectronics and Advanced Materials 6 (2004) 127 – 132.

[14] H. Metin, R. Esen, J. crystal Growth 258 (2003) 141-148.

[15] E. Çetinörgü, C. Gümüº, R. Esen, Thin Solid Films 515 (2006) 1688-1693.

[16] P.J. Sebastian, Hailin Hu, Advanced Materials for Optical Electronics 4 (1994) 407.

[17] C. Guillén, M. A. Martínez, J. Herrero, Thin Solid Films 335 (1998) 37.

[18] N. G. Dhere, D. L. Waterhouse, K. B. Sundaram, O. Melendez, N. R. Parikh, B. Patnaik, J. Mater. Sci. Mater. Electron 6 (1995) 52.

[19] B.D. Cullity, Elements of X-ray Diffraction, second ed. Addison-Wesley, MA, 1972, p. 102.

[20] G. B. Williamson, R. C. Smallman, Phil. Mag. 1 (1956) 34.

[21] H. P. Kulg, L. E. Alexander, X-ray Diffraction Procedures, John Wiley, New York, 1974, p. 661.

[22] S. Velumani, Xavier Mathew, P. J. Sebastian, Sa. K. Narayandass, D. Mangalaraj, Solar Energy Materials & Solar Cells 76 (2003) 347-358.

[23] S. Prabahar, M. Dhanam, J. Crystal Growth 285 (2005) 41-48.

[24] Jae-Hyeong Lee, Thin Solid Films 515 (2007) 6089-6093.

[25] P.K. Ghosh, S. Jana, U.N. Maity, K.K. Chattopadhyay, Physica E: Low-dimensional Systems and Nanostructures 35 (2006) 178-182.

[26] A. Cortes, H. Gómez, R. E. Marotti, G. Riveros, E. A. Dalchiele, Solar Energy Materials and Solar Cells 82 (2004) 21-34.

[27] P.K. Nair, O. Gomez Daza, A. Arias-Carbajal Readigos, J. Campos, M.T.S. Nair, Semicond. Sci. Technol. 16 (2001) 651.

[28] Jiangrong Xiao, Tianyou Peng, Ke Dai, Ling Zan, Zhenghe Peng, J. Solid State Chemistry 180 (2007) 3188-3195.