Influence of the wettability nature of the nozzle wall on the dynamics of drop formation

Influence of the wettability nature of the nozzle wall on the dynamics of drop formation

Pardeep BishnoiMrityunjay K. Sinha 

Department of Mechanical Engineering, National Institute of Technology, Jamshedpur 831013, India

Corresponding Author Email: 
mail2pardeepbishnoi@gmail.com
Page: 
1005-1009
|
DOI: 
https://doi.org/10.18280/ijht.360329
Received: 
8 February 2018
| |
Accepted: 
2 August 2018
| | Citation

OPEN ACCESS

Abstract: 

This paper describes the Volume of Fluid model in which a driving force is applied to stimulate the droplet ejection. Through this model, the wettability of the nozzle’s inner wall will be determined as it plays a vital role in the droplet’s shape and size. The effect of parameters viz. breakup thread length, breakup velocity, breakup/ detachment time on the drop formation are computed in this paper by using volume of fluid method. The results indicate that the increase in contact angle of the nozzle inner wall reduces the drop’s breakup time while increasing the breakup velocity and thread length of the drop. Also, the results indicate the reduction in quality of drop formation with increased hydrophobic nature, which is not suitable for spray painting or in inkjet printing. Similarly, the deterioration in the quality of drop formation is due the more hydrophilic nature of the nozzle.

Keywords: 

contact angle, drop formation, volume of fluid, wettability

1. Introduction
2. Computational Simulation of Capillary Tube
3. Computational Domain and Mesh
4. Results and Discussion
5. Conclusions
Nomenclature
  References

[1] Liu F. (2018). Numerical analysis of droplet atomization in wet electrostatic precipitator based on computational particle-fluid dynamics. International Journal of Heat and Technology 36(1): 215-221. https://doi.org/10.18280/ijht.360129

[2] Fan JW, Liu Y, Liu LL, Yang SR. (2017). Hydrodynamics of residual oil droplet displaced by polymer solution in micro-channels of lipophilic rocks. International Journal of Heat and Technology 35(1): 611-618. https://doi.org/10.18280/ijht.350318

[3] Wijshoff H. (2010). The dynamics of the piezo inkjet printhead operation. Physics Report 491: 77-177. http://dx.doi.org/10.1016/j.physrep.2010.03.003

[4] Singh M. (2010). Inkjet printing-process and its applications. Advance Material 22: 673-685. https://doi.org/10.1002/adma.200901141

[5] Basaran OA. (2013). Nonstandard ink jets. Annual Review of Fluid Mechanics 45: 85-113. https://doi.org/10.1146/annurev-fluid-120710-101148

[6] Eggers J. (1997). Nonlinear dynamics and breakup of free surface flows. Reviews of Modern Physics 69(3): 865-929. https://doi.org/10.1103/RevModPhys.69.865

[7] van der Bos A, van der Meulen MJ, Driessen T, van den Berg M, Reinten H, Wijshoff H, Michel Versluis Lohse D. (2014). Velocity profile inside piezoacoustic inkjet droplets in flight: comparison between experiment and numerical simulation. Physical Review Applied 1(1): 014004. https://doi.org/10.1103/PhysRevApplied.1.014004

[8] (2014). Physics: Fast imaging captures falling droplets. Nature. 507(142). http://dx.doi.org/10.1038/507142a 

[9] Dong H, Carr WW. (2006). An experimental study of drop-on-demand drop formation. Physics of Fluids 18: 072102. https://doi.org/10.1063/1.2217929

[10] Kwon KS. (2009). Speed measurement of ink droplet by using edge detection techniques. Measurement 42: 44-50. http://dx.doi.org/10.1016/j.measurement.2008.03.016

[11] Castrej´on-Pita JR. (2011). Experiments and Lagrangian simulations on the formation of droplets in drop-on-demand mode. Physical Review E 83: 036306. 

[12] Castrejo´n-Pita AA. (2012). Breakup of liquid filaments. Physical Review Letters 108: 074506. 

[13] Badie R, Lange DFD (1997). Canism of drop constriction in a drop-on-demand inkjet system. Proceedings of Royal Society of London A 453: 2573-2581. http://dx.doi.org/10.1098/rspa.1997.0137

[14] Feng JQ. (2002). A general fluid dynamic analysis of drop ejection in drop-on-demand ink jet devices. Journal of Imaging Science and Technology 46: 398-408.

[15] Young T. (1805). An essay on the cohesion of the fluids. Philosophical Transactions of the Royal Society of London 95: 65-87. http://dx.doi.org/10.1098/rstl.1805.0005

[16] Gajewski A. (2008). Contact angle and sessile drop diameter hysteresis on metal surfaces. International Journal of Heat Mass Transfer 51: 4628–4636. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2008.01.027

[17] Lam CNC, Kim N, Hui DKDY, Kwok DY, Hair ML, Neumann AW. (2001). The effect of liquid properties to contact angle hysteresis. Colloids and Surfaces A: Physicochemical and Engineering Aspects 189(1-3): 265-278.

[18] Carmen Moraila-Martínez L. (2012). The efect of contact line dynamics and drop formation on measured values of receding contact angle at very low capillary numbers. Colloids and Surfaces A: Physicochemical Engineering Aspects 404: 63–69. https://doi.org/10.1016/j.colsurfa.2012.04.012

[19] Choi KH, Rahman A, Ko JB, Rehmani A, Ali A, Doh YH, Kim DS. (2010). Development and ejection behavior of different material-based electrostatic ink-jet heads. The International Journal of Advanced Manufacturing Technology 48(1-4): 165-173.

[20] Kim YJ, Choi J, Son SU, Lee S, Nguyen XH, Nguyen VD, Byun D, Ko HS. (2010). Comparative study on ejection phenomena of droplets from electro-hydrodynamic jet by hydrophobic and hydrophilic coatings of nozzles. Japanese Journal of Applied Physics 49(6R): 060217. 

[21] Lai JM. (2010). Influence of liquid hydrophobicity and nozzle passage curvature on microfluidic dynamics in a drop ejection process. Journal of Micromechanics and Microengineering 20: 015033. https://doi.org/10.1088/0960-1317/20/1/015033

[22] Aidun CK, Clausen JR. (2010). Lattice-Boltzmann method for complex flows. Annual Review of Fluid Mechanics 42: 439-472. https://doi.org/10.1146/annurev-fluid-121108-145519

[23] Chen SY, Doolen GD. (1998). Lattice Boltzmann method for fluid flows. Annual Review of Fluid Mechanics 30: 329-364. https://doi.org/10.1146/annurev.fluid.30.1.329

[24] Ladd AJC, Verberg R. (2001). Lattice-Boltzmann simulations of particle-fluid suspensions. Journal of Statistical Physics 104: 1191-1251. https://doi.org/10.1023/A:1010414013942

[25] Zhang J. (2011). Lattice Boltzmann method for microfluidics: models and applications. Microfluid Nanofluid 10: 1-28. https://doi.org/10.1007/s10404-010-0624-1

[26] Wen B. (2015). Thermodynamic - consistent lattice Boltzmann model for non-ideal fluids. Europhysics Letter 112: 44002. https://doi.org/10.1209/0295-5075/112/44002

[27] Wen B. (2014). Galilean invariant fluid-solid interfacial dynamics in lattice Boltzmann simulations. Journal of Computational Physics 266: 161-170.

[28] Timmermans J. (1960). The physico-chemical constants of binary systems in concentrated solutions: Systems with inorganic+ organic or inorganic compounds (excepting metallic derivatives). Interscience Publishers 4. 

[29] Pardeep, Srivastava M, Sinha MK. (2018). Numerical simulation of dynamics of the drop formation at a vertical capillary tube. In: Singh M., Kushvah B., Seth G., Prakash J. (eds) Applications of Fluid Dynamics. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-10-5329-0_27

[30] Wilkes ED. (1999). Computational and experimental analysis of dynamics of drop formation. Physics of fluids 11(12): 3577-3598. https://doi.org/10.1063/1.870224