Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2

Preparation, thermal insulation and flame retardance of cellulose nanocrystal aerogel modified by TiO2

Jing LuoHua Wang 

Metallurgical and Energy Engineering College, Kunming University of Science and Technology, Kunming 650093, China

Fire Protection Institute, Southwest Forestry University, Kunming 650024, China

Corresponding Author Email: 
lincoln558@163.com
Page: 
614-618
|
DOI: 
https://doi.org/10.18280/ijht.360226
Received: 
10 September 2017
| |
Accepted: 
25 February 2018
| | Citation

OPEN ACCESS

Abstract: 

This paper successfully prepares TiO2-modified cellulose nanocrystal (CNC) composite aerogel through in-situ synthesis of TiO2 in CNC solution and supercritical CO2 drying. Then, the structure, morphology, thermal insulation and flame retardance of TiO2/CNC composite were investigated through X-ray diffraction (XRD), scanning electron microscopy (SEM), thermogravimetry and differential thermal analysis (TG-DTA), and cone calorie measurement. The XRD and SEM spectra show that the TiO2-modified CNC aerogels exhibited a 3D network structure and underwent a decline in crystallinity through TiO2 doping and modification. The TG-DTG curves reveal that TiO2/CNC aerogels surpassed the CNC aerogel in thermal decomposition temperature. The cone calorie measurement indicates that TiO2/CNC aerogels lagged far behind the CNC aerogel in the PHRR. To sum up, the test results demonstrate that TiO2 doping and modification is an effective way to enhance the flame retardant and thermal insulation properties of cellulose aerogel. The research findings shed new light on the development of thermal insulation and fire-retardant clothing materials.

Keywords: 

cellulose nanocrystal (CNC), TiO2, aerogel, flame retardance

1. Introduction
2. Experiment
3. Results and Analysis
4. Conclusions
Acknowledgement
  References

[1] Yuan B, Zhang J, Yu J, Song R, Mi QY, He JS, Zhang J. (2016). Transparent and flame retardant cellulose/aluminum hydroxide nanocomposite aerogels. Science China Chemistry 59(10): 1-7. https://doi.org/10.1007/s11426-016-0188-0

[2] Kaya M. (2017). Super absorbent, light, and highly flame retardant cellulose‐based aerogel cross linked with citric acid. Journal of Applied Polymer Science 134(38): 45315. https://doi.org/10.1002/app.45315

[3] Fan B, Chen S, Yao Q, Sun Q, Jin C. (2017). Fabrication of cellulose nanofiber/AlOOH aerogel for flame retardant and thermal insulation. Materials 10(3): 311. https://doi.org/10.3390/ma10030311

[4] Shang K, Liao W, Wang YZ. (2017). Thermally stable and flame-retardant polyvinyl alcohol/montmorillonite aerogel via, a facile heat treatment. Chinese Chemical Letters 29(3): 433-436. https://doi.org/10.1016/j.cclet.2017.08.017

[5] Wu YQ, Tian CH, Qing Y, Yao CH, Li XG, Yang SL. (2014). Preparation and properties of APP-SiO2 aerogel/poplar wood composite with excellent flame retardant. Journal of Functional Materials 45(14): 14113-14117.

[6] Hribernik S, Smole MS, Kleinschek KS. (2007). Flame retardant activity of SiO 2 -coated regenerated cellulose fibres. Polymer Degradation & Stability 92(11): 1957-1965.

[7] Ravi M, Samuelson L, Smith K, Westmoreland P, Parmar V, Yan F, Kumar J, Watterson A. (2008). Nanocomposites of TiO2 and Siloxane Copolymers as Environmentally Safe Flame-Retardant Materialsâ. Journal of Macromolecular Science: Part A - Chemistry 45(11): 942-946. https://doi.org/10.1080/10601320802380208

[8] Moafi HF, Shojaie AF, Zanjanchi MA. (2011). Flame-retardancy and photocatalytic properties of cellulosic fabric coated by nano-sized titanium dioxide. Journal of Thermal Analysis & Calorimetry 104(2): 717-724. https://doi.org/10.1007/s10973-010-1133-x

[9] Xue CH, Zhang L, Wei P, Jia ST. (2016). Fabrication of super hydrophobic cotton textiles with flame retardancy. Cellulose 23(2): 1471-1480. https://doi.org/10.1007/s10570-016-0885-2

[10] Li J, Zheng H, Sun Q, Han S, Fan B, Yao Q, Yan C, Jin C. (2015). Fabrication of super hydrophobic bamboo timber based on an anatase TiO2 film for acid rain protection and flame retardancy. Rsc Advances 5(76): 62265-62272. https://doi.org/10.1039/C5RA09643J

[11] Vasiljević J, Tomšič B, Jerman I, Orel B, Jakša G, Simončič B. (2014). Novel multifunctional water- and oil-repellent, antibacterial, and flame-retardant cellulose fibres created by the sol–gel process. Cellulose 21(4): 2611-2623. https://doi.org/10.1007/s10570-014-0293-4

[12] Ning Y, Deng H, Ping YU. (2012). Study on nano-TiO2 for flame-retardant finishing of cotton fabric. Journal of Tianjin Polytechnic University.

[13] Dogan M. (2014). Thermal stability and flame retardancy of guanidinium and imidazolium borate finished cotton fabrics. Journal of Thermal Analysis & Calorimetry 118(1): 93-98. https://doi.org/10.1007/s10973-014-3950-9

[14] Zheng Z, Liu Y, Zhang L, Wang H. (2016). Synergistic effect of expandable graphite and intumescent flame retardants on the flame retardancy and thermal stability of polypropylene. Journal of Materials Science 51(12): 5857-5871. https://doi.org/10.1007/s10853-016-9887-6

[15] Guo L, Chen Z, Lyu S, Fu F, Wang S. (2018). Highly flexible cross-linked cellulose nanofibril sponge-like aerogels with improved mechanical property and enhanced flame retardancy. Carbohydr Polym 179: 333-340. https://doi.org/10.1016/j.carbpol.2017.09.084

[16] Han Y, Zhang X, Wu X, Lu C. (2015). Flame Retardant, Heat Insulating Cellulose Aerogels from Waste Cotton Fabrics by in Situ Formation of Magnesium Hydroxide Nanoparticles in Cellulose Gel Nanostructures. Acs Sustainable Chemistry & Engineering 3(8): 1853-1859. https://doi.org/10.1021/acssuschemeng.5b00438

[17] Yuan B, Zhang JM, Mi Q, Yu J, Song R, Zhang J. (2017). Transparent Cellulose-silica composite aerogels with excellent flame retardancy via in situ sol-gel process. Acs Sustainable Chemistry & Engineering 5(11): 11117-11123. https://doi.org/10.1021/acssuschemeng.7b03211

[18] Mukherjee S, Mishra PC, Chaudhuri P, Banerjee G. (2018). Theoretical modeling and optimization of microchannel heat sink cooling with TiO2-water and ZnO-water nanofluids. International Journal of Heat and Technology 36(1): 165-172. https://doi.org/10.18280/ijht.360122

[19] Sun QF, Lu Y, Xia YZ, Yang DJ, Li J, Liu YX. (2012). Flame retardancy of wood treated by TiO2/ZnO coating. Surface Engineering 28(8): 555-559. https://doi.org/10.1179/1743294412Y.0000000027

[20] Yang YX, Zhang CY, Huang YW, Guo YS, Xu JY. (2016). The design and research of a creative automatic bouncing socket. Mathematical Modelling of Engineering Problems 3(2): 67-70. https://doi.org/10.18280/mmep.030204

[21] He C, Huang J, Li S, Meng K, Zhang L, Chen Z, Lai Y. (2018). Mechanical Resistant and Sustainable Cellulose-based Composite Aerogels with Excellent Flame Retardant, Sound-absorption and Super-anti-wetting Ability for Advanced Engineering Materials. Acs Sustainable Chemistry & Engineering 6(1): 927-936. https://doi.org/10.1021/acssuschemeng.7b03281