# Mathematical modeling of two-phase media heat transfer coefficient in air cooled condenser systems

Mathematical modeling of two-phase media heat transfer coefficient in air cooled condenser systems

Yanán C. Medina Nislan H. Khandy  Ken M. Carlson  Oscar M.C. Fonticiella  Osvaldo F.C. Morales

Center of Energy Studies and Environmental Technology, Universidad Central de Las Villas, Cuba

Mechanical & Aerospace Engineering Department, New Mexico State University, USA

Deparment of Chemical Engineering, University of California, Santa Barbara, USA

Technical Sciences Faculty, Universidad de Matanzas, Cuba

Corresponding Author Email:
ycamaraza1980@yahoo.com
Page:
319-324
|
DOI:
https://doi.org/10.18280/ijht.360142
24 July 2017
| |
Accepted:
20 March 2018
| | Citation

OPEN ACCESS

Abstract:

This paper presents the results of the continuity of the research process carried out at the Center for Energy Studies, belonging to the Faculty of Technical Sciences of the University of Matanzas, related to the production of dimensionless models for the determination of the mean coefficient of heat transfer by condensation in Air Cooled Condenser systems (ACC), inside straight and inclined tubes. The research consists in analytically obtaining the solution of the differential equation of the velocity profile, considering that the condensation is of the film type, finally the Roshenow empirical condition is combined with the theoretical solution, to generate a numerical expression that allows obtaining with A 15, 2 % deviation in 692 tests, a mean value of the heat transfer coefficient by condensation very similar to that obtained with the use of the most referenced model in the literature known and consulted, Chato's empirical model.

Keywords:

equation, Roshenow’s correction, condensation, deviation, heat transfer

1. Introduction
2. Materials and Methods
3. Experimental Validation
4. Conclusions
Acknowledgement
Nomenclature
References

[1] Dorao CA, Fernandhino M. (2017). Dominant dimensionless groups controlling heat transfer coefficient during flow condensation inside pipes. International Journal of Heat and Mass Transfer 112: 465-479. https://doi.org/10.1016/j.ijheatmasstransfer.2017.04.104

[2] Boyko LD, Kruzhilin GN. (1967). Heat transfer and hydraulic resistance during condensation of steam in a horizontal tube and in a bundle of tubes. International Journal of Heat and Mass Transfer 10(3): 361-373. https://doi.org/10.1016/0017-9310(67)90152-4

[3] Kim SM, Mudawar I. (2013). Universal approach to predicting heat transfer coefficient for condensing mini/micro-channel flow. International Journal of Heat and Mass Transfer 56(1–2): 238–250. http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.09.032.

[4] Zhang H, Fang X, Shang H, Chen W. (2015). Flow condensation heat transfer correlations. International Journal of Refrigeration 59: 102–114. http://dx.doi.org/10.1016/j.ijrefrig.2015.07.013

[5] Shah MM. (1979). A general correlation for heat transfer during film condensation inside pipes. International Journal of Heat and Mass Transfer 22(4): 547–556. https://doi.org/10.1016/0017-9310(79)90058-9

[6] Rosson F. (1957). Heat transfer during condensation inside a horizontal tube. Ph.D. Thesis. Rice University. https://scholarship.rice.edu/handle/1911/18428, accessed on Jun. 21, 2017.

[7] Tandon TN, Varma HK, Gupta CP. (1995). Heat transfer during forced convection condensation inside horizontal tube. International Journal Refrigeration 18(3): 210–214. https://doi.org/10.1016/0140-7007(95)90316-R

[8] Dobson MK, Chato JC. (1998). Condensation in smooth horizontal tubes. Journal Heat Transfer 120(1): 193–213, http://dx.doi.org/10.1115/1.2830043

[9] Cavallini A, Col DD, Doretti L, Matkovic M, Rossetto L, Zilio C, Censi G. (2006). Condensation in horizontal smooth tubes: a new heat transfer model for heat exchanger design. Heat Transfer Engineering 27(8):pp. 31–38. https://doi.org/10.1080/01457630600793970

[10] Bohdal T, Charun H, Sikora M. (2012). Heat transfer during condensation of refrigerants in tubular minichannels. Archives of Thermodynamics 33(2): 3–22. http://dx.doi.org/10.2478/v10173-012-0008-x

[11] Camaraza Y, (2017). Introducción a la Termotransferencia. Ed. Universitaria, 2017, La Habana, Cuba, ISBN: 978-959-16-3286-9. http://beduniv.reduniv.edu.cu/index.php?page=3&id=1179&db=0 accessed on Jun. 21, 2017.

[12] Camaraza Y, Khandy NH, Cruz-Fonticiella OM, Garcia OF. (2017). Abstract of heat transfer coefficient modelation in single-phase systems inside pipes. Mathematical Modelling of Engineering Problems 4(3):132-136. https://doi.org/10.18280/mmep.040303

[13] Camaraza Y, Cruz-Fonticiella OM, Garcia OF. (2018). Obtención de un modelo para la determinación del coeficiente medio de transferencia de calor por condensación en sistemas ACC, Tecnología Química XXXVIII(1): 230-246 http://scielo.sld.cu/pdf/rtq/v38n1/rtq15118.pdf

[14] Lee H, Yoon J, Kim Y, Bansal PK. (2006). Condensing heat transfer and pressure drop characteristics of hydrocarbon refrigerants. International Journal of Heat and Mass Transfer 49: 1922–1927. https://doi.org/10.1016/j.ijheatmasstransfer.2005.11.008

[15] Yan Y, Lin T. (1999). Condensation heat transfer and pressure drop of refrigerant R-134a in a small pipe. International Journal of Heat and Mass Transfer 42: 697–708. https://doi.org/10.1016/S0017-9310(98)00195-1

[16] Akers WW, Deans HA, Crosser OK. (1959). Condensing heat transfer within horizontal tubes. Chemical Engineering Progress Symposium Series 55(29) pp. 171–176.

[17] Lemmon EW, Huber ML, McLinden MO. (2013). NIST reference fluid thermodynamic and transport properties REFPROP, Tech. Rep.

[18] Tang CC. (2011). A study of heat transfer in non-boiling two-phase gas-liquid flow in tubes for horizontal, slightly inclined, and vertical orientations. Ph.D. Thesis. Oklahoma State University Publishing, 2011. Ar Xiv: 1011.1669v3. https://hdl.handle.net/11244/7820. accessed on Jun. 21, 2017.

[19] Mollamahmutoglu M. (2012). Study of isothermal pressure drop and non-boiling heat transfer in vertical downward two phase flow. Ms. Thesis. Oklahoma State University Publishing, . https://pqdtopen.proquest.com/doc/1318673189.html?FMT=ABS, accessed on Jun. 21, 2017.

[20] Cavallini A, Censi G, Doretti, L, Longo GA, Rossetto L, Zilio C. (2003). Condensation inside and outside smooth and enhanced tubes – a review of recent research. International Journal of Refrigeration 26(4): 373–392. http://dx.doi.org/10.1016/S0140-7007(02)00150-0

[21] Wojtan L, Ursenbacher T, Thome J R. (2005). Investigation of flow boiling in horizontal tubes: Part II. Development of a new heat transfer model for stratified-wavy, dryout and mist flow regimes. International Journal of Heat and Mass Transfer 48(14): 2970–2985. https://doi.org/10.1016/j.ijheatmasstransfer.2004.12.013

[22] Rifert VG, Sereda VV. (2015). Condensation inside Smooth horizontal tubes: Part 1. Survey of the methods of heat-exchange prediction. Thermal Science 19(5): 1769-1789. https://doi.org/10.2298/TSCI140522036R

[23] Thome JR. (2005). Condensation in plain horizontal tubes: recent advances in modelling of heat transfer to pure fluids and mixtures. Journal of the Brazilian Society of Mechanical Sciences and Engineering 27(1): 23-30, http://dx.doi.org/10.1590/S1678-58782005000100002

[24] Cttani L, Bozzoli F, Raineri S. (2017). Experimental study of the transitional flow regime in coiled tubes by the estimation of local convective heat transfer coefficient. International Journal of Heat and Mass Transfer 112: 825-836. https://doi.org/10.1016/j.ijheatmasstransfer.2017.05.003

[25] Bhagwat SM, Ghajar AJ. (2016). Experimental investigation of non-boiling gas-liquid two phase flow in upward inclined tubes. Experimental Thermal and Fluid Science 79: 301–318. https://doi.org/10.1016/j.expthermflusci.2016.08.004

[26] Derby M, Joon H, Peles Y, Jensen MK. (2011). Condensation heat transfer in square, triangular, and semi-circular mini-channels. International Journal of Heat and Mass Transfer 55(3): 187–197. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.002

[27] Nasser I, Duwairi HM. (2016). Thermal dispersion effects on convection heat transfer in porous media with viscous dissipation. International Journal of Heat and Technology 34(2): 207-212. http://doi.org/10.18280/ijht.340208

[28] Pourmahmoud N, Abbaszadeh M, Rashidzadeh M. (2016). Numerical simulation of effect of shell heat transfer on the vortex tube performance. International Journal of Heat and Technology 34(2): 293-301. http://doi.org/10.18280/ijht.340220

[29] Zhang ZY, Yang JG. (2015). The effect of face-air velocity distribution on heat transfer performance of air-cooled condensers. International Journal of Heat and Technology 33(1): 55-62. http://doi.org/10.18280/ijht.330108

[30] Zhan NY, Xu Y, Wang ZY. (2015). Research on heat-transfer and three-dimensional characteristics of natural convection in a small cavity with heat sources. International Journal of Heat and Technology 33(3): 59-66. http://doi.org/10.18280/ijht.330308

[31] Priyam A, Chand P. (2017). Heat transfer and pressure drop characteristics of wavy fin solar air heater. International Journal of Heat and Technology 35(4): 1015-1022. http://doi.org/10.18280/ijht.350438