Effect of sand as thermal damper integrated in flat plate water solar thermal collector

Effect of sand as thermal damper integrated in flat plate water solar thermal collector

Amine T. BenhouiaMohamed Teggar Ahmed Benchatti 

Laboratory of Mechanics, University of Laghouat, B.P. 37G, Laghouat 03000, Algeria

Corresponding Author Email: 
a.benhouia@lagh-univ.dz
Page: 
21-25
|
DOI: 
https://doi.org/10.18280/ijht.360103
Received: 
6 December 2017
| |
Accepted: 
2 March 2018
| | Citation

OPEN ACCESS

Abstract: 

An experimental study was carried out to evaluate the thermal performance of sand dune as storage material integrated in a flat solar thermal collector. The experimental apparatus is realized then installed on site. The parameter measured in this study is the temperature at different points of the collector. A graphic presentation shows the results obtained experimentally during the day of the test (winter period). The absorbing plate temperature reaches a maximum value of 97 °C and the layer of sand of 25 mm can ensure a storage of 20 minutes with a damping of thermal fluctuations of 5.2 °C. The amount of heat stored could replace the incident solar energy during the presence of clouds for 20 minutes.

Keywords: 

flat plate solar collector, sand,thermal damper, short term thermal storage

1. Introduction
2. Description of the Experimental Set-up and Test Procedure
3. Experimental Results
4. Conclusions
Nomenclature
  References

[1] Rabin Y, Bar-Niv I, Korin E, Mikic B. (1995). Integrated solar collector storage system based on a salt-hydrate phase-change material. Solar Energy 55(6): 435-444. http://dx.doi.org/ 10.1016/0038-092X(95)00074-2

[2] Chen Z, Gu M, Peng D. (2010). Heat transfer performance analysis of a solar flat-plate collector with an integrated metal foam porous structure filled with paraffin. Applied Thermal Engineering 30(14-15): 1967-1973. http://dx.doi.org/10.1016/j.applthermaleng.2010.04.031

[3] Haillot D, Goetz V, Py X, Benabdelkarim M. (2011). High performance storage composite for the enhancement of solar domestic hot water systems Part 1: Storage material investigation. Solar Energy 85(5): 1021-1027. http://dx.doi.org/ 10.1016/j.solener.2011.02.016

[4] Haillot D, Nepveua F, Goetz V, Py X, Benabdelkarim M. (2012). High performance storage composite for the enhancement of solar domestic hot water systems: Part 2: Numerical system analysis. Solar Energy 86(1): 64-77. http://dx.doi.org/ 10.1016/j.solener.2011.09.006

[5] Sarbu I, Sebarchievici C. (2018). A comprehensive review of thermal energy storage, Sustainability 10(1). http://dx.doi.org/ 10.18690/978-961-286-052-3.14

[6] Badran AA, Yousef IA, Joudeh NK, Al Hamad R, Halawa H, Hassouneh HK. (2010). Portable solar cooker and water heater. Energy Convers Manag 51(8): 1605–1609. http://dx.doi.org/ 10.1016/j.enconman.2009.09.038

[7] Gertzos KP, Caouris YG. (2007). Experimental and computational study of the developed flow field in a flat plate integrated collector storage (ICS) solar device with recirculation. Experimental Thermal Fluid Science 31(8): 1133–45. http://dx.doi.org/ 10.1016/j.expthermflusci.2006.12.002

[8] AL-Khaffajy M, Mossad R. (2013). Optimization of the heat exchanger in a flat plate indirect heating integrated collector storage solar water heating system. Renewable Energy 57: 413–421. http://dx.doi.org/ 10.1016/j.renene.2012.11.033

[9] Khalifa A, Abdul Jabbar RA. (2010). Conventional versus storage domestic solar hot water systems: a comparative performance study. Energy Conversionand Management 51(2): 265-270. http://dx.doi.org/ 10.1016/j.enconman.2009.09.021

[10] Nieuwoudt MN, Mathews EH. (2005). A mobile solar water heater for rural housing in Southern Africa. Build Environ 40(9): 1217–1234. http://dx.doi.org/ 10.1016/j.buildenv.2004.11.024

[11] Kumar R, Rosen MA. (2010). Thermal performance of integrated collector storage solar water heater with corrugated absorber surface. Appl Therm Eng. 30(13): 1764-1768. http://dx.doi.org/ 10.1016/j.applthermaleng.2010.04.007

[12] Sathyamurthy R, Nagarajan PK, Edwin MA, Madhu B, El-Agouz SA, Ahsan A, Mageshbabu D. (2016). Experimental investigations on conventional solar still with sand heat energy storage. International Journal of Heat and Technology 34(4): 597-603. http://dx.doi.org/ 10.18280/ijht.340407

[13] Hazami M, Kooli S, Farhat A, Belghith A. (2005). Performance of a solar storage collector. Desalination 183(1-3): 167-172. http://dx.doi.org/ 10.1016/j.desal.2005.03.033

[14] Sopian K, Syahri M, Abdullah S, Othman MY, Yatim B. (2004). Performance of a non metallic unglazed solar water heater with integrated storage system. Renew Energy 29: 1421-1430. http://dx.doi.org/ 10.1016/j.renene.2004.01.002

[15] Taheri Y,  Ziapour BM, Alimardani K. (2013). Study of an efficient compact solar water heater. Energy Conversion and Management 70: 187-193. http://dx.doi.org/ 10.1016/j.enconman.2013.02.014

[16] Duffie, Beckman. (1991). Solar engineering of thermal processes. In: John Wiley, Son Inc. (eds), NY.

[17] Manual on the Use of Thermocouples in Temperature Measurement: 4th Edition. (1993). American Society for Testing and Materials. R M Park (ed),  Philadelphia, USA.

[18] Ibrahim D, Marc AR. (2011). Thermal energy storage systems and applications. In: Wiley J, Son Ltd, Canada.