Solar air collectors with doubles glazed by different distances in support of mass flow

Solar air collectors with doubles glazed by different distances in support of mass flow

Foued ChabaneElmoaiz Sekseff 

Department of Mechanical Engineering, Faculty of Technology, University of Biskra 07000, Algeria

Laboratoire de Génie Mécanique (LGM), Faculty of Technology, University of Biskra 07000, Algeria

Corresponding Author Email: 
fouedmeca@hotmail.fr
Page: 
37-53
|
DOI: 
https://doi.org/10.3166//I2M.17.37-53
Received: 
| |
Accepted: 
| | Citation

OPEN ACCESS

Abstract: 

The main objective of this study is to minimize thermal losses forward for improving the thermal performance of a solar collector. The improvement of the thermal performance of the solar collectors, because of the low thermo-physical characteristics of the air used as coolant, is based on several techniques, among them that which consist in conserving the thermal energy by minimizing thermal losses to the heat before. We devoted to a descriptive study of the test bench, the measuring equipment used as well as the configurations of double-glazed solar collector. The test bench consists of an experimental device that has been developed exclusively for on-site measurements. Experimental results show that the addition of second glazed is effective in minimizing forward thermal losses for a solar air collector. Our project is an experimental study of the Biskra site, and the essential goal minimized thermal losses to the front. For this purpose, single-glaze, solar air collector measurements should be compared with the variable-range, dual-pane solar collector measurements for multiple flow rates.

Keywords: 

double-glazed, solar air collector, efficiency, mass flow rate, thermal losses

1. Introduction
2. Materials and methods
3. Results and discussion
4. Conclusion
Acknowledgments

The authors thank the director of the University of Biskra (Pr. Ahmed Boutarfaia) about the couragement for all researchers in our University and our colleagues from LGM who provided insight and expertise that greatly assisted the research, although they may not agree with all of the interpretations/conclusions of this paper.

Abbreviations
  References

Agrawal A., Sarviya R. M. (2014). A review of research and development work on solar dryers with heat storage. International Journal of Sustainable Energy, Vol. 35, No. 6, pp. 583-605. https://doi.org/10.1080/14786451.2014.930464

Akhtar N., Mullick S. C. (2012). Effect of absorption of solar radiation in glass-cover(s) on heat transfer coefficients in upward heat flow in single and double glazed flat-plate collectors. International Journal of Heat and Mass Transfer, Vol. 55, pp. 125–132. https://doi.org/10.1016/j.ijheatmasstransfer.2011.08.048

An X., Liu W. (2017). Review on sludge drying process and dryer in solar energy. American Journal of Energy Engineering, Vol. 5, No. 5, pp. 34-38.

Arıcı M., Karabay H. (2010). Determination of optimum thickness of double-glazed windows for the climatic regions of Turkey. Energy and Buildings, Vol. 42, No. 10, pp. 1773-1778. https://doi.org/ 10.1016/j.enbuild.2010.05.013

Asphaug S. K., Jelle B. P., Gullbrekken L., Uvsløkk S. (2016). Accelerated ageing and durability of double-glazed sealed insulating window panes and impact on heating demand in buildings. Energy and Buildings, Vol. 116, pp. 395-402.

Benkhelifa A. (1998). Optimisation d’un capteur solaire plan. Revue des Energies Renouvelables. Physique Energétique, pp. 13-18.

Benyelles F., Benbadjia B., Benyoucef B., Ziani Z. (2007). Comparaison entre un capteur à aérogel de silice et d’autre capteur plans. 13iémes J. Int. Thermique, Albi, France, pp. 28-30.

Chantawong P. (2017). Natural ventilation using glazed solar chimney and hot water collector production. Energy Procedia, Vol. 138, pp. 26-31.

El-Sebaii A. A., Aboul-Enein S., Ramadan M. R. I., Shalaby S. M., Moharram B. M. (2011). Investigation of thermal performance of-double pass-flat and v-corrugated plate solar air heaters. Energy, Vol. 36, No. 2, pp. 1076–1086. https://doi.org/10.1016/j.energy.2010.11.042

Enibe S. O. (2002). Performance of a natural circulation solar air heating system with phase change material energy storage. Renewable Energy, Vol. 27, pp. 69-86. https://doi.org/10.1016/S0960-1481(01)00173-2

Eryener D., Hollick J., Kuscu H. (2017). Thermal performance of a transpired solar collector updraft tower. Energy Conversion and Management, Vol. 142, pp. 286-295 https://doi.org/10.1016/j.enconman.2017.03.052

Fudholi A., Bakhtyar B., Saleh H., Hafidz Ruslan M., Yusof Othman M., Sopian K. (2016). Drying of salted silver jewfish in a hybrid solar drying system and under open sun: Modeling and performance analyses. International Journal of Green Energy, Vol. 13, No. 11, pp. 1135-1144. https://doi.org/10.1080/15435075.2016.1175347

Gao W., Lin W., Liu T., Xia C. (2007). Analytical and experimental studies on the thermal performance of cross-corrugated and flat-plate solar air heaters. Applied Energy, Vol. 84, pp. 425-441. https://doi.org/10.1016/j.apenergy.2006.02.005

Karim M. A., Hawlader M. N. A. (2004). Development of solar air collectors for drying applications. Energy Conversation and Management, Vol. 45, pp. 329-344. https://doi.org/10.1016/S0196-8904(03)00158-4

Kiatsiriroat T., Jiatrakul W., Nuntaphan A. (2007). Experimental study on heat transfer enhancement in solar air heater by electric field. Heat Transfer Engineering. Vol. 28, pp. 38-41. https://doi.org/10.1080/01457630600985642

Kiggundu N., Wanyama J., Galyaki C., Banadda N., Muyonga J. H., Zziwa A., Kabenge I. (2016). Solar fruit drying technologies for smallholder farmers in Uganda, A review of design constraints and solutions. CIGR Journal, Vol. 18, No. 4, pp. 200-210.

Koyuncu T. (2006). Performance of various designs of solar air heaters for crop drying applications. Renewable Energy, Vol. 31, pp. 1073-1088. https://doi.org/10.1016/j.renene.2005.05.017

Kurtbaş I., Durmus A. (2004). Efficiency and exergy analysis of a new novel solar air heater. Renewable Energy, Vol. 29, pp. 1489-1501.

Njomo D. (1998). Etude théorique du comportement thermique d'un capteur solaire plan à air à couverture combinée plastique-vitre. Rev. Gén. Therm., Vol. 37, pp. 973-980. https://doi.org/10.1016/S0035-3159(98)80022-6.

Othman M. Y., Yatim B., Sopian K., Bakar M. N. A. (2006). Double  pass photovoltaic-thermal solar collector. Journal of Energy Engineering, Vol. 132, No. 3, pp. 121-126. https://doi.org/10.1016/j.desal.2007.04.007

Ouafi N., Benaouda N., Moghrani H., Yassaa N., Maachi R. (2016). Experimental analysis of solar drying kinetic of Algerian bay leaves (Laurus nobilis L.). Revue des Energies Renouvelables, Vol. 19, No. 2, pp. 251-264.

Pérez-Grande I., Meseguer J., Alonso G. (2005). Influence of glass properties on the performance of double-glazed facades. Applied Thermal Engineering, Vol. 25, No. 17–18, pp. 3163-3175. https://doi.org/10.1016/j.applthermaleng.2005.04.004

Shakouri M., Banihashemi S. (2016). Data in support of energy performance of double-glazed windows. Data in Brief, Vol. 7, pp. 1139-1142. https://doi.org/10.1016/j.dib.2016.03.094

Sreerag T. S. (2016). Experimental investigations of a solar dryer with and without multiple phase change materials (PCM’s). Journal of Engineering, Vol. 13, No. 3, pp. 210-217 https://doi.org/10.1108/WJE-06-2016-028

Togrul I. T., Pehlivan D., Akosman C. (2004). Development and testing of a solar air-heater with conical concentrator. Renewable Energy, Vol. 29, No. 2, pp. 263-275. https://doi.org/10.1016/S0960-1481(03)00168-X

Urbikain M. K., José M. S. (2012). Heat transfer through a double-glazed unit with an internal louvered blind: Determination of the thermal transmittance using a biquadratic equation. International Journal of Heat and Mass Transfer, Vol. 55, No. 4, pp. 1226-1235. https://doi.org/10.1016/j.ijheatmasstransfer.2011.09.032

Valarmathi T. N., Sekar S., Purushothaman M., Sekar S. D., Reddy M., Reddy M. R. S., Reddy K. (2017). Recent developments in drying of food products. Frontiers in Automobile and Mechanical Engineering, Vol. 197, No. 012037. https://doi.org/10.1088/1757-899X/197/1/012037

Zheng W., Li B., Zhang H., You S., Li Y., Ye T. (2016). Thermal characteristics of a glazed transpired solar collector with perforating corrugated plate in cold regions. Energy, Vol. 109, pp. 781-790. https://doi.org/10.1016/j.energy.2016.05.064