Numerical and Experimental Validation of Multi-physics Design Models for Axial Flux Permanent Magnet Wind Generator

Numerical and Experimental Validation of Multi-physics Design Models for Axial Flux Permanent Magnet Wind Generator

Mouheb Dhifli Hamza Ennassiri Ferhat Chabour Yacine Amara Georges Barakat

Mechanical Engineering Department, Sreenidhi Institute of Science and Technology, Hyderabad 501301, India

Corresponding Author Email: 
dhifli.mouheb @ gmail.com
Page: 
27-60
|
DOI: 
https://doi.org/10.3166/EJEE.18.27-60
Received: 
22 June 2015
| |
Accepted: 
21 March 2016
| | Citation

OPEN ACCESS

Abstract: 

An Axial Flux Permanent Magnet synchronous (AFPM) generator dedicated to small wind turbine is presented. Hence, the investigation of electromagnetic performance is done using quasi-3D analytical model based on multi-slice 2D analytical solution of Maxwell equations coupled sequentially to thermal model and mechanical model for rotor thickness study and vibration behaviour. The manufactured prototype has 10 kW rated power and operates at 375 rpm. This three-phase direct drive generator has double-stator-single-rotor configuration with 20 poles, 24 slots and modular windings. Experimental results such as Electromotive Forces (EMF) and inductances are agreed with those obtained from analytical simulation; both of them have been satisfying the desired technical specifications.

Keywords: 

design, axial flux machine, analytical solution, 3D finite element analysis, wind turbine, experimental results.

1. Introduction
2. AFPM Wind Generator
3. Analytical Modelling of the AFPM Machine
4. Machine Test and Experimental Results
5. Conclusion
Annex
  References

Abdel-Karim N. (2008). Dimensionnement et optimisation d’un aérogénérateur à aimants permanents à flux axial de petite puissance. Ph. D thesis (French) from University of Le Havre

Abdel Karim N., Azzouzi J., Barakat G. (2006). Winding functions theory and Maxwell’s equations coupled analytical modeling of an axial flux PM synchronous machine. International Revue of Electrical Engineering (IREE), vol. 1, n° 1, p. 27-35.

Amara Y., Reghem P., Barakat G. (2010). Analytical prediction of eddy-current loss in armature windings of permanent magnet brushless AC Machines. IEEE Transactions on Magnetics, vol. 46, n° 8, p. 3481-3484.

Azzouzi J. (2007). Contribution à la modélisation et à l’optimisation des machines synchrones à aimants permanents à flux axial. Application au cas de l’aérogénérateur. Ph. D thesis (French) from University of Le Havre.

Azzouzi J., Barakat G., Dakyo B. (2005). Quasi-3-D analytical modeling of magnetic field of an axial flux permanent-magnet synchronous machine. IEEE Energy Conversion, vol. 20, n°. 4, p. 746-752.

Barakat G., El Meslouhi T. and Dakyo B. (2001). Analysis of the cogging torque behaviour of a two-phase axial flux permanent magnet synchronous machine. IEEE Transactions on Magnetics, vol. 37, n° 4, p. 2803-2805.

Barakat G. and Amara Y. (2011). Analytical modeling of flat and tubular linear PM machines with surface-mounted magnets and semi-closed slots. in Proceeding of International Symposium on Linear Drives for Industry Applications LDIA 2011, Eindhoven, Netherlands.

Bellara A., Amara Y., Barakat G., Reghem P.. (2010). Analytical modeling of the magnetic field in axial flux permanent magnet machines with semi-closed slots at no load, in Proceeding of the XIXe International Conference on Electrical Machines ICEM 2010, Rome, Italy.

Cvetkovski G., Petkovska L., Cundev M., Gair S.. (2000). Quasi 3D FEM in function of an optimization analysis of a PM disk motor. in Proceeding of the International Conference on Electrical Machines ICEM 2010, vol. 5, Helsinki, p. 1871-1875.

de la Barrière O., S. Hlioui, H. Ben Ahmed, M. Gabsi, M. LoBue. (2010). Three-dimensional analytical modeling of a permanent-magnet linear actuator with circular magnets. IEEE Transactions on Magnetics, vol. 46, n° 9, p. 3608-3616.

Dhifli M., Bali H., Laoubi Y., Verez G., Amara Y., Barakat G. (2014). Modeling and Prototyping of Axial Flux Permanent Magnet Machine for Small Wind Turbine. in Proceeding of Electrical Sciences and Technologies in Maghreb CISTEM’14, Tunis, Tunisia.

Furlani E.P., Knewtson M.A. (1997). A three-dimensional field solution for permanent magnet axial-field motors. IEEE Transactions on Magnetics, vol. 33, n° 3, p. 2322-2325.

Gieras J.F., Wang R.J., Kamper M.J. (2008). Axial Flux Permanent Magnet Brushless Machines, Springer Verla.

Gysen B. L. J., Jansen J. L. G., Paulides J. J. H., Lomonova E. A. (2009). Design aspects of an active electromagnetic suspension system for automotive applications. IEEE Transactions on Magnetics, vol. 45, n° 5, p. 1589-1597.

Hemeida A., Sergeant P. (2014). Analytical Modelling of Surface PMSM Using a Combianed Solution of Maxwell’s Equations and Magnetic Equivalent Circuit (MEC). IEEE Transactions on Magnetics, DOI 10.1109/TMAG.2014.2330801.

Lubin T., Mezani S., Rezzoug A. R. (2011). 2-D analytical model for surface-mounted permanent-magnet motors with semi-closed slots. IEEE Transactions on Magnetics, vol. 47, n° 2, p. 479-492.

Mahmoudi A., Rahim N. A., Hew W. P. And Uddin M. N. (2008). Design, analysis, and prototyping of a novel-structured solid-rotor-ringed line-start axial-flux permanent-magnet motor. IEEE Transactions. on Industrial. Electronics, vol. 55, n° 10, p. 3591-3601.

Marignetti F. and Colli V. D. (2008). Design of Axial Flux PM Synchronous Machine Through 3-D Coupled Electromagnetic Thermal and Fluid-Dynamical Finite-Element Analysis. IEEE Transactions. on Industrial. Electronics, vol. 61, n° 4, p. 1722-1734.

Parviainen A. (2003). Design of axial flux PM low speed machines and performance comparison between radial flux and axial flux machines. PhD thesis,Lappeenranta University of Technology.

Parviainen A., Niemelä M. and Pyrhönen J. (2004). Modeling of axial flux permanent magnet machines. IEEE Transactions. Industry. Applications, vol. 40, n° 5, p. 1333-1340.

Seo J. M., Ro J. S., Rhyu S. H., Jung I. S. and Jung H. K. (2015). Novel Hybrid Radial and Axial Flux Permanent-Magnet Machine Using Integrated Windings for High-Power Density. IEEE Transactions on Magnetics, DOI 10.1109/TMAG.2014.2344044.

Shin P. S., H. J. Cheung. (2011). A Magnetostrictive Force and Vibration Mode Analysis of 3 kW BLDC Motor by a Magneto-Mechanical Coupling Formulation. Journal of Electrical Engineering & Technology, vol. 6, n° 1, p. 76-80.

Tiegna H.. (2013). Contribution à la modélisation analytique des machines synchrones à flux axial à aimants permanents à attaque directe en vue de leur dimensionnement. Ph. D thesis (French) from University of Le Havre.

Tiegna H., Bellara A., Amara Y., Barakat G. (2012). Analytical Modeling of the Open-Circuit Magnetic Field in Axial Flux Permanent Magnet Machines with Semi-Closed Slots. IEEE Transactions on Magnetics, vol. 48, n° 3, p. 1212-1226.

Tiegna H., Amara Y. and Barakat G. (2011). Multislice analytical model of axial flux PM machines. in Proceeding of COMPUMAG 2011, Sydney, Australia.

Verez G., Tiegna H., Barakat G. and Hoblos G.. (2012). Analytical Thermal Modelling of Axial Flux Permanent Magnet Synchronous Machines, in Proceeding of the XIX International Conference on Electrical Machines ICEM 2012, Marseille, France.

Zhu Z. Q., Ruangsinchaiwanich S., Ishak D. and Howe D. (2005). Analysis of cogging torque in brushless machines having nonuniformly distributed stator slots and stepped rotor magnets. IEEE Transactions on Magnetics, vol. 41, n° 10, p. 3910-3912.

Wang J., Jewell G.W. andHowe D. (2001). Design optimisation and comparison of tubular permanent magnet machine topologies. Electric Power Applications IEE Proceedings, vol. 148, n° 5, p. 456-463.

Wu L. J., Zhu Z. Q., Staton D., Popescu M. and Hawkins D. (2011). Subdomain model for predicting armature reaction field of surface-mounted permanent-magnet machines accounting for tooth-tips. IEEE Transactions on Magnetics, vol. 47, n° 4, p. 812-822.

Zhilichev Y. N. (1998). Three-dimensional analytic model of permanent magnet axial flux machine. IEEE Transactions on Magnetics, vol. 34, n° 6, p. 3897-3901.