Investigation of Electronic and Elastic Properties of YNi2-xMx (M: Fe, Co, Cu and Zn): Ab Initio Calculations Analyzed with Data Mining Approach

Investigation of Electronic and Elastic Properties of YNi2-xMx (M: Fe, Co, Cu and Zn): Ab Initio Calculations Analyzed with Data Mining Approach

Mostafa K. BenabadjiAmmaria Mahmoudi Djazia Bouabdallah Fatiha Saidi Houda I. Faraoun Ghouti Merad 

Division Etude et Prédiction des Matériaux (DEPM), Unité de Recherche Matériaux et Energies Renouvelable (URMER), Université Abou Bekr Belkaid, B.P 119 Fg. Pasteur, Tlemcen 13000, Algérie

Ecole Supérieure en Génie Electrique et Energétique (ESGEEO), B.P 64, CH2 ACHABA Hanifi, Technopôle USTO 31000 Oran, Algérie

Corresponding Author Email:
27 March 2018
| |
12 April 2018
| | Citation



We investigated Structural, electronic and mechanical properties of pure YNi2 and YNi2-xMx (M: Fe, Co, Cu and Zn) Laves phases using first principles calculations. Density functional theory is considered within framework of both pseudo-potentials and plane wave’s basis using VASP (Vienna ab initio Software Package). The optimized structural parameters were in good agreement with experiment. We calculated formation heat for pure YNi2 and showed that the cubic C15–YNi2 Laves phase are more stable than C14 and C36 hexagonal phases. We evaluated and discussed Electronic density of states (DOSs) and charge density distribution. The elastic properties were calculated, discussed and analyzed with data mining approach.


Ab-initio calculations DFT, laves phases, structural, electronic and elastic properties, YNi2-xMx alloys, data mining approach

1. Introduction
2. Results and Discussions
3. Conclusion

[1] Ross JW, Crangle J. (1964). Magnetization of cubic laves phase compounds of rare earths with cobalt, Physical Review 133: A509-A510. 

[2] McDermott MJ, Marklund KK. (1969). Partial quenching of rare earth moment in cubic laves intermetallic compounds, Journal of Applied Physics 40: 1007-1008.

[3] Ormeci A, Chu F, Wills JM, Mitchell TE, Albers RC, Thoma DJ,Chen SP. (1996). Total-energy study of electronic structure and mechanical behavior of C15 Laves phase compounds: NbCr2 and HfV2. Physical Review B 54 12753-12762.

[4] Roth J. (2005). Shock waves in complex binary solids: Cubic Laves crystals, quasicrystals, and amorphous solids, Physical Review B 71: 064102.

[5] Liu JJ, Ren WJ, Zhang ZD, Li D, Li J, Zhao XG, Liu W, Or SW. (2006). Spin configuration and magnetostrictive properties of Laves compounds TbxDy0.7−xPr0.3 (Fe0.9B0.1)1.93 (0.10⩽x⩽0.28). Journal of Applied Physics: 100 023904.

[6] Wu Z, . Saini NL, Agrestini S, Castro DD, Bianconi A, Marcelli A, Battisti M, Gozzi D, Balducci G. (2000). Ru K-edge absorption study on the La1-xCexRu2 system. Journal of Physics: Condensed Matter 12: 6971.

[7] Nagasako N, Fukumoto A, Miwa K. (2002). First-principles calculations of C14-type Laves phase Ti-Mn hydrides. Physical Review B 66: 155106.

[8] Hong S, Fu CL. (2002). Hydrogen in Laves phase ZrX2 (X=V, Cr, Mn, Fe, Co, Ni) compounds: Binding energies and electronic and magnetic structure. Physical Review B 66: 094109.

[9] Uchida H, Matsumura Y, Uchida H, Kaneko H. (2002). Progress in thin films of giant magnetostrictive alloys. Journal of Magnetism and Magnetic Materials 239: 540-545.

[10] Liu CT, Zhu JH, Brady MP, McKamey CG, Pike LM. (2000). Physical metallurgy and mechanical properties of transition-metal laves phase alloys, Intermetallics 8: 1119-1129.

[11] Tao X, Ouyang Y, Liu H, Zeng F, Feng Y, Du Y, Jin Z. (2008). Ab initio calculation of the total energy and elastic properties of laves phase c15 Al2Re (Re = Sc, Y, La, Ce–Lu). Computational Materials Science: 44 392-399.

[12] Srinivas G, Sankaranarayanan V, Ramaprabhu S. (2008). Thermodynamic and kinetic properties of Ho1−xTixCo2-hydrogen system. Journal of Physics and Chemistry of Solids 69: 1869-1876.

[13] Lindbaum A, Hafner J, Gratz E, Heathman S. (1998). Diffraction, structural stability of YM2 compounds (M = Al, Ni, Cu) studied by ab initio total-energy calculations and high-pressure X-ray diffraction. Journal of Physics: Condensed Matter 10: 2933.

[14] Sari A, Merad G, Abdelkader HS. (2015). Ab initio calculations of structural, elastic and thermal properties of TiCr2 and (Ti,Mg)(Mg,Cr)2 Laves phases. Computational Materials Science 96 part a: 348-353.

[15] Benabadji MK, Faraoun HI, Abdelkader HS, Dergal M, Hlil EK, Merad G. (2013). Structural stability and electronic structure study of YCu2–YZn2 laves phases by first-principles calculations. Computational Materials Science 77: 366-371.

[16] Saidi F, Benabadji MK, Faraoun HI, Aourag H. (2014). Structural and mechanical properties of laves phases YCu2 and YZn2: First principles calculation analyzed with data mining approach. Computational Materials Science 89: 176-181.

[17] Chen S, Sun Y, Duan YH, Huang B, Peng MJ. (2015). Phase stability, structural and elastic properties of C15-type Laves transition-metal compounds MCo2 from first-principles calculations. Journal of Alloys and Compounds 630: 202-208.

[18] Hu WC, Liu Y, Li DJ, Zeng XQ, Xu CS. (2014). First-principles study of structural and electronic properties of c14-type Laves phase Al2Zr and Al2Hf. Computational Materials Science 83: 27-34.

[19] Mao P, Yu B, Liu Z, Wang F, Ju Y. (2014). Mechanical, electronic and thermodynamic properties of Mg2Ca laves phase under high pressure: A first-principles calculation, Computational Materials Science 88: 61-70.

[20] Liu Y, Hu WC, Li DJ, Li K, Jin HL, Xu YX, Xu CS, Zeng XQ. (2015). Mechanical, electronic and thermodynamic properties of C14-type AMg2 (A = Ca, Sr and Ba) compounds from first principles calculations. Computational Materials Science 97: 75-85.

[21] Connétable D, Mathon M, Lacaze J. (2011). First principle energies of binary and ternary phases of the Fe–Nb–Ni–Cr system. Calphad, 35: 588-593.

[22] Anton H, Schmidt PC. (1997). Theoretical investigations of the elastic constants in Laves phases. Intermetallics 5: 449-465.

[23] Nong ZS, Zhu JC, Cao Y, Yang XW, Lai ZH, Liu Y. (2013). A first-principles study on the structural, elastic and electronic properties of the C14 Laves phase compounds tix2 (X=Cr, Mn, Fe). Physica B: Condensed Matter 419: 11-18.

[24] Yu W, Wang N, Xiao X, Tang B, Peng L, Ding W. (2009). First-principles investigation of the binary AB2 type Laves phase in Mg–Al–Ca alloy: Electronic structure and elastic properties. Solid State Sciences: 111400. Https://

[25] Chen XQ, Wolf W, Podloucky R, Rogl P. (2005). Ab initio study of ground-state properties of the Laves phase compounds TiCr2, ZrCr2, and HfCr2, Physical Review B 71: 174101. 

[26] Kresse G, Furthmüller J. (1996). Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B 54: 11169-11186. 

[27] Kresse G, Furthmüller J. (1996). Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Computational Materials Science 6: 15-50.

[28] Kresse G, Joubert D. (1999). From ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B 59: 1758-1775. 

[29] Hohenberg P, Kohn W. (1964). Inhomogeneous electron gas. Physical Review: 136 B864-B871. 

[30] Kohn W, Sham LJ. (1965). Self-consistent equations including exchange and correlation effects, Physical Review 140: A1133-A1138. 

[31] Vanderbilt D. (1990). Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Physical Review B 41: 7892-7895. 

[32] Perdew JP, Chevary JA, Vosko SH, Jackson KA, Pederson MR, Singh DJ, Fiolhais C. (1992). Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation, Physical Review B, 466671-6687. 

[33] Monkhorst HJ, Pack JD. (1976). Special points for Brillouin-zone integrations, Physical Review B 13: 5188-5192. 

[34] Tyuterev VG, Vast N. (2006). Murnaghan’s equation of state for the electronic ground state energy. Computational Materials Science 38: 350-353.

[35] Suh C, Rajan K. (2005). Virtual screening and QSAR formulations for crystal chemistry. QSAR & Combinatorial Science 24: 114.

[36] Suh CKR, Vogel BM, Narasimhan B, Mallapragada SK. (2007). Combinatorial materials science, edited by Mallapragada SK, Narasimhan B, and Porter MD (John Wiley-Interscience, Hoboken, NJ.

[37] Broderick S, Rajan K. (2011). Proceedings of the first World Congress on Integrated Computational Materials, TMS, Wiley, 

[38] Ericksson L, Johansson E, Kettaneh-wold N, Wold S, Umetrics AB. 2001. Umea. 

[39] Zhang RJ, Wang YM, Lu MQ, Xu DS, Yang K. (2005). First-principles study on the crystal, electronic structure and stability of LaNi5−xAlx (x = 0, 0.25, 0.5, 0.75 and 1). Acta Materialia 53: 3445-3452.

[40] Fang CM, Huis MAV, Zandbergen HW. (2012). Stability and structures of the CFCC-TmC phases: A first-principles study. Computational Materials Science 51: 146-150.

[41] Gratz E, Lindbaum A. (1994). The influence of the magnetic state on the thermal expansion in 1:2 rare earth intermetallic compounds. Journal of Magnetism and Magnetic Materials 137: 115-121. (94)90195-3

[42] Colinet C, Pasturel A, Buschow KHJ. (1987). Short‐range order and stability in Gd‐Ni and Y‐Ni systems. Journal of Applied Physics: 623712-3717.

[43] Mehl MJ. (1993). Pressure dependence of the elastic moduli in aluminum-rich Al-Li compounds. Physical Review B 47: 2493-2500. 

[44] Khenata R, Bouhemadou A, Reshak AH, Ahmed R, Bouhafs B, Rached D, Al-Douri Y, Rérat M. (2007). First-principles calculations of the elastic, electronic, and optical properties of the filled skutterudites CeFe4P12 and ThFe4P12. Physical Review B 75: 195131. 

[45] Bouhemadou A, Khenata R, Zegrar F, Sahnoun M, Baltache H, Reshak A. (2006). Ab initio study of structural, electronic, elastic and high pressure properties of barium chalcogenides. Computational Materials Science 38263-270.

[46] REUSS A, Angew Z. (1929). Berechung der fliessgrenze von mischkristallen, berechnung der fließgrenze von mischkristallen auf grund der plastizitätsbedingung für einkristalle. MATH. MECH. 9: 55. Https://

[47] Cao Y, Zhu J, Liu Y, Lai Z, Nong Z. (2013). First-principles studies of the structural, elastic, electronic and thermal properties of γ′-Ni3Ti. Physica B: Condensed Matter 412: 45-49.