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One of the common and difficult issues in computer vision is to detect the object. 

Researchers have widely experimented and contributed to the performance improvement 

of object detection and associated tasks including object classification, localization, and 

segmentation over the way of the last decade of deep learning’s rapid evolution. Object 

detectors can be broadly categorized into two groups: two stage and single stage object 

detectors. Two stage detectors primarily focus on selected region proposals via 

sophisticated architecture whereas single stage detectors concentrate on all feasible spatial 

region proposals for object detection via relatively easier architecture in one go. Any object 

detector’s performance is assessed using inference time and detection accuracy. In regards 

to detection accuracy, two stage object detectors surpass single stage object detectors. In 

this survey, we present a deep literature survey on object detection methods. We also 

provide a summary of the comparison between two-stage and single-stage object detectors 

along with suggestions for further research in real-world. 
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1. INTRODUCTION

Object detection has recently gained popularity due to its 

vast range of applications. Object detection is the most 

important aspect of computer vision. It is employed in      real-

life applications such as security, autonomous driving, video 

surveillance, remote sensing target detection, robotics, and so 

on [1, 2]. The main goal of object detection is to recognize 

visual items in images or videos of a given class, such as 

humans, cats, dogs, books, vehicles, etc., and subsequently 

highlight those objects by drawing boxes and sort out them 

into the classes of that specific object. Deep Learning 

algorithms have been widely employed in all aspects of 

computer vision in recent years. Object detection was designed 

using standard approaches until 2014 before Deep Learning 

methods were introduced [3-5]. 

Traditionally it works on SIFT, HOG, Haar, DPM and VJ 

detector. As SIFT algorithm has not worthy at illumination 

changes and high computational cost because it is very slow. 

In HOG, object identifying time is large due to it uses sliding 

window approach for feature extraction. Training duration is 

very large in VJ detector [6]. To overcome the problems of 

traditional methods Convolution Neural Network (CNN) was 

reintroduced with Deep Learning for object detection which 

has been recognized as a base for future approaches to video 

object detection tasks. Due to the fantastic performance of 

CNN, it is broadly used in image processing and computer 

vision fields; it generates accurate performance in image 

classification and detection tasks [7]. Figure 1 depicts the 

classification of object detection approaches, whereas Figure 

2 depicts the fundamental architecture of CNN. In this survey 

paper, we have given more attention to deep learning methods: 

Two stage and Single or One stage.  

The key challenges in object detection are as follows: 

i. Intra class variation: Intra class variation across

examples of the alike object is widespread in nature. This 

change could be produced by several reasons, including 

occlusion, illumination, position, and viewpoint. These 

uncontrolled externals can have a significant impact on the 

appearance of the thing [8]. It is expected that the components 

will deform non-rigidly may be rotated, resized, or obscured. 

Some items and may be surrounded by unobtrusive 

surroundings, which makes the extraction process hard. 

ii. Number of categories: This is a stimulating task due to

the large number of object classes to categories. It also 

demands more high-quality annotated data, which is currently 

in short supply. 

A research question is if it is possible to train a detector with 

fewer examples. 

iii. Efficiency: Modern prototype requires a large amount

of computer power to provide decent detection results. With 

the development of edge and mobile devices, good object 

detectors are important for furthering computer vision 

innovations. 

The essential topologies of deep learning-based object 

detection models are shown in Figure 3. In general, deep 

learning-based object detection models have a backbone and a 

head network. The head network uses the extracted features to 

locate the bounding boxes of the identified objects and classify 

them after the backbone network extracts information from the 

input images (See Figure 3). 
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Figure 1. Object detection techniques 

Figure 2. CNNarchitecture [9] 

Figure 3. Basic object detection model architectures based on one-stage vs. two-stage deep learning. The backbone network can 

be employed as a CNN or transformer-based network, and depending on the head network's structure, it can be divided into one-

stage or two-stage networks. The one-stage detector operates in the brain network's object localization and classification 

processes concurrently, as shown in (a). However, after obtaining the region proposals, the two-stage detector performs 

localization and classification on the regions, as demonstrated in (b) 
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We have thoroughly examined several object detection 

architectures and related technologies in this paper. The rest of 

the paper is constructed as: Section II gives a comprehensive 

literature review of advanced deep learning methodologies 

systems. Section III gives an analysis of the systems studied in 

the literature survey is done and future suggestions are 

provided. Section IV concludes the paper. 

2. LITERATURE SURVEY

Object detection based on deep learning is broadly 

categories into two modules: Anchor-Based and Anchor-Free. 

Anchor-Based module can be further divided into two 

detectors according to the different training methods: Two-

stage detectors (based on region proposals) and One-Stage 

detectors (based on regression) [10].  

This review has two sections: two-stage detectors and 

single-stage detectors. A system called a two-stage detector 

has a second module that forecasts region borders. Object 

proposals are located in an image in the first stage of the model, 

then categorize and localize them in the second stage. Because 

they use two different procedures, these technologies generate 

proposals more slowly, have more complex architectures, and 

lack global context. In single-stage detectors, semantic objects 

are classified and identified by dense sampling. In order to 

locate items, they use predetermined boxes or keypoints 

having different sizes and dimensions. 

2.1 Two stage detectors 

1) R-CNN: Using CNNs to increase detection performance

is possible with the first study of region-based convolutional 

neural networks (R-CNNs) [11, 12]. This study’s authors 

provide a scalable and simple detection technique that 

enhances mean average precision (mAP) by greater than 30% 

over the former best result, which produced a mAP of 53.3%. 

When tagged training data is minimal, supervised pre-training 

for a supplementary structured form accompanied by domain-

specific refinement yields a noteworthy performance 

improvement. This work [13] addresses the problem of 

producing plausible object positions for use in object 

recognition. The researchers recommend selective search, 

which combines the advantages of segmentation and 

comprehensive search The image structure, like segmentation, 

guides our sampling technique. They seek to capture all 

conceivable object positions, similar to an exhaustive search. 

Instead of depending on a single method to generate believable 

object placements, authors broaden their search and use a 

variety of complementary picture partitioning to deal with as 

many image scenarios as is practical. The trained, class-

specific Support Vector Machines (SVMs) are then fed the 

feature vectors to compute confidence scores, according to the 

authors [8]. Despite being slow, time- and space-consuming, 

R-CNN introduced a new era in object detection [14]. Even

when some computations were shared, the training process

was difficult and required days to complete on tiny datasets.

2) Fast R-CNN: Girshick replaced the SPP-pyramidal net’s

structure of pooling layers with a unique spatial bin termed the 

RoI pooling layer. The researchers used variations of the 

current latest pre-trained models as a foundation, such as [15, 

16]. In a one-step using stochastic gradient descent (SGD), a 

mini-batch of two photos was used to train the network. Back-

propagation distributed computations between the two 

pictures’ ROIs, enabling the network to converge faster. 

3) Faster R-CNN: An RPN (region proposal network) with

fully twisted networks accepts any input image and returns 

windows that can be used [17, 18]. All of these windows are 

associated with an objectness score, which indicates the 

likelihood of an object appears. RPN incorporates Anchor 

boxes, as opposed to its predecessors [19], which employed 

image pyramids to deal with object size variation. It regressed 

over many bounding boxes with varying aspect ratios to 

localize an object.  

4) FPN: The authors created a Feature pyramid network

(FPN) [20], a DCNN with an inherent multi-scale, pyramidal 

hierarchy that may be used to construct feature pyramids at a 

reasonable price. This algorithm accepts any image size as 

input and outputs attribute maps of the same size at different 

levels. This approach has an extensive range of applications. 

Here Faster R-CNN is based on ResNet-101. FPN has the 

potential to provide high-level semantics at all sizes, 

minimizing detection error rates. 

5) Mask R-CNN: Mask R-CNN [21] is an approach that

improves Faster R-CNN by introducing an object mask 

prediction branch alongside the conventional bounding box 

detection branch. Mask R-CNN is easy to train and requires 

less overhead than Faster R-CNN, which works at 5 frames 

per second. On every objective, Mask R-CNN exceeds all 

previous single-model entrants. Mask R-CNN training is the 

same as faster R-CNN training. Mask R-CNN surpassed 

existing single-model designs while also introducing instance 

segmentation with minimum overhead calculations. 

6) SPP Net: SPP-net just shifted CNN’s convolution layers

afore the object proposals module and added a pooling layer, 

which made the network size/aspect ratio independent and 

reduced calculations. Spatial Pyramid Pooling (SPP) is 

proposed as a method of analyzing photos regardless of size or 

aspect ratio [15] because they are reserved for technical editing 

by editors. 

2.2 One stage detector 

Figure 4. YOLO timeline 

1) YOLO, YOLO v2, YOLO v3, YOLO v4, YOLO v5: The

YOLO (You Only Look Once) method was the first 

regression-based technique, and it was put forth by authors [22] 

in 2016. YOLO subsequent versions are depicted in Figure 4. 

In an end-to-end neural network, it forecasted the coordinates 

of the bounding boxes while also categorizing the items. 

Despite the fact that YOLO permitted real-time object 
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detection, it was still hard to identify small-sized objects, and 

the bounding box coordinate inaccuracy was substantial. 

Authors [23] presented the YOLOv2 approach, which is 

more precise and faster than the YOLO method. Although this 

method partially utilised the multi-scale region features and 

continued to use the Darknet19 backbone network, which had 

poor feature extraction performance, it was limited in its 

ability to further increase detection accuracy. To improve the 

detection accuracy of existing systems, the deep residual 

network (ResNet) was used as the core network in DSSD 

(Deconvolutional Single Shot Detector) [24] and YOLOv3 [25, 

26]. However, the detection speed of these approaches is 

greatly hampered by the more complex network. The authors 

[27] provide a face mask recognition and standard wear

detection algorithm built on a modified YOLO-v4 to address

the problems posed by the challenging environment, such as

low accuracy, low real-time performance, poor resilience,

andothers. The YOLOv5 model is available in five different

sizes: nano, small, medium, large, andextra large. The dataset

determines the type of model. In addition, with version 6.0, the

frivolous model of the YOLOv5 model is out, with a bettered

inference speed of 1666 fps [28, 29].

2) SSD: SSD is a rapid single-shot multi-box detector for

multiple classes developed by the authors [30]. It constructs a 

unified detector framework that is as quick as YOLO and as 

precise as Faster-RCNN. SSD’s architecture incorporates the 

regression concept from the YOLO model as well as the 

anchoring method from the Faster R-algorithm CNN’s.  

3) RetinaNet: A distinct Focal Loss concentrates drill on a

small set of difficult situations, avoiding the detector from 

being overloaded by a significant number of easy negatives 

during training. To assess the efficacy of loss [31], the authors 

created and trained RetinaNet, a basic dense detector. If 

trained with the focus loss, the results show that RetinaNet 

could match the speed of prior one-stage detectors while 

beating all current detectors in terms of precision. The 

researchers [32] proposed that for the trivial Retina NetmAP-

FLOPs trade-off, the heaviest bottleneck layer be lowered. The 

suggested solution consistently improves the mAP-FLOPs 

trade offline with a linear downfall trend, whereas the input 

image scaling method reduces more exponentially. The 

proposed strategy improves mAP by 0.1 percent at 1.15x 

FLOPs reduction, 0.2% at 1.15x FLOPs reduction, and 0.3% 

at 1.8x FLOPs reduction. 

4) Refinenet: The approach has been shown in the study [33]

to knowingly improve efficiency on a wide variability of 

datasets, scene settings, and camera viewpoints, resulting in 

superior quality object boxes at a low computational cost. The 

design, in particular, achieves considerable performance gains 

while asserting a fast run-time speed. It is shown that iterative 

refining influences on future vision tasks like object tracking 

in both the image and ground planes. As per authors in the 

study [11] in order to localize and segment objects, 

convolutional neural networks can be applied to bottom-up 

region proposals and segment objects and when labeled 

training data is scarce, supervised pre-training for an auxiliary 

task, followed by domain-specific fine-tuning, yields a 

significant performance boost. 

Figure 5 depicts number of publications in object detection. 

Few of the object detections methods in videos are 

discussed below. 

A semi-automatic algorithm is presented by Park et al. in 

the study [34]. Intra-frame object extraction and inter-frame 

object tracking are the two procedures involved. 

Homogeneous region segmentation is used in intra-frame 

object extraction to reduce the need for human interaction, 

while 1-D projected motion estimate is used in inter-frame 

object tracking to speed up processing. Additionally, a more 

effective flooding technique for the traditional water shed 

algorithm is suggested 

Figure 5. 1998-2018 object detection (Data from google 

scholar advanced search) 

A technique for unsupervised segmentation in both photos 

and videos is proposed in the study [35] by Deng and 

Manjunath. The JSEG algorithm uses color-texture regions in 

both video and picture data to operate. The proposed approach 

consists of two steps: colour quantization and spatial 

segmentation. The first stage involves quantizing the image's 

colours into a number of representative classes that can be 

used to distinguish distinct parts of the picture. Then the labels 

for the matching colour classes are placed in place of the pixels. 

They are now left with an image's class map. Authots create 

the "J-image" by applying the suggested "excellent" 

segmentation criterion to the class-map using local windows, 

where high values represent potential color-texture area 

boundaries and low values represent interiors. The image is 

then segmented using a region-growing technique based on 

multi-scale J-images. In the case of video, a second region 

tracking approach is utilized in addition to the previously 

indicated method to ensure consistency in results even in the 

case of nonrigid object motion. This method's drawback is that 

the algorithm oversegments each colour when a smooth colour 

change (such going from red to orange) takes place. However, 

even if we manage to solve this issue by looking for smooth 

transitions, we still run into the issue that a smooth transition 

might not necessarily signify a homogeneous zone. In the case 

of video, an error created in one frame affects the following 

frames. 

A technique for automatically segmenting moving objects 

in MPEG-4 films is presented by Tsaig and Averbuch (2002) 

in the research [36]. Each frame of an image sequence is 

divided into video object planes by MPEG-4 (VOPs). In the 

scene, each VOP represents a single moving object. The 

fundamental step is to categorize areas based on motion 

information into foreground or background. The formulation 

of the segmentation problem is the detection of moving items 

against a static background. By using an eight parameter 

perspective motion model, camera motion is adjusted. The 

watershed algorithm is used to first obtain a spatial split. The 

spatial gradient in the colour space is then estimated using 

Canny's gradient. Region matching in a hierarchical 

framework is used to estimate the mobility of each foreground 

region. The regions are initially classified using a Markov 
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random field model that incorporates the predicted motion 

vectors and is optimized using highest confidence first (HCF). 

Information from the preceding frame is included in MRF. A 

dynamic memory is used in the last stage to guarantee the 

segmentation process' temporal coherency. 

An strategy for automatically counting the number of 

objects and extracting independently moving video objects 

from MPEG-4 films is presented by Venkatesh Babu et al. [37]. 

Since compressed MPEG films have sparse motion vectors 

(i.e., one motion vector per macro-block), a technique to 

enhance the motion information from a few frames on each 

side of the present frame is suggested. A motion vector is 

assigned to each pixel in the frame by the use of median filter 

interpolation. egmentation is then completed. The Expectation 

Maximization (EM) approach is utilized since there aren't 

enough data points to estimate the motion parameters. There 

is a suggested algorithm for calculating the number of motion 

models. Following initial segmentation, tracking produces 

Video Object Planes (VOPs). The pixels at the edges are 

assigned to the appropriate VO during the edge refining phase, 

which takes place after the VOs. 

Segmenting a video sequence into the objects is the goal of 

Mezaris et al. [38]. This algorithm is divided into three phases: 

First-frame segmentation using colour, motion, and position 

data, followed by a temporal tracking process, and then a 

region-merging approach. The K-means-with-connectivity-

constraint algorithm is used for segmentation. Utilizing a 

Bayes classifier, tracking is carried out. Reassigning modified 

pixels to existing regions and handling new regions added to 

the sequence are both done via rule-based processing. Instead 

of using motion at the frame level, region merging is done 

using a trajectory-based method. One benefit is that it 

successfully tracks moving objects or new things that emerge 

on the scene. 

An incremental Log- Euclidean Riemannian subspace 

learning approach is proposed by Hu et al. in the research [39]. 

The log-Euclidean Riemannian metric is used to first convert 

the co-variance matrices of the image features into a vector 

space. A log-Euclidean block-division appearance model 

captures both global and local spatial layout information. 

Particle filtering-based Bayesian state inference is utilized for 

both single-object and multi-object tracking with occlusion 

reasoning. The log-Euclidean block division appearance 

model is incrementally updated to incorporate changes in 

object appearance. 

An approach that uses frame-by-frame target detection 

results as the input is suggested by Huang et al. in the study 

[40]. The first batch of target tracklets (tracking fragments) is 

produced using a dual-threshold method that is cautious. Only 

trustworthy detection replies are linked as a result. Until 

further data is gathered, associations that are in doubt are 

postponed. The Maximum A Posteriori (MAP) problem, 

which in addition to initializing, tracking, and terminating 

them, hypothesizes a trajectory of being a false alarm, is 

achieved via hierarchical association using many passes. This 

problem is resolved using the Hungarian algorithm. These 

associations' subsequent ranking is viewed as a bagranking 

problem that can be solved by a bag-ranking boosting 

algorithm. In order to simplify the optimization of the released 

objective loss function, this paper also provides a soft max/min. 

In the research, Farah et al. [41] describe a reliable tracking 

technique to remove a rodent from a frame in an uncontrolled 

laboratory environment. It operates in two phases: First, the 

target is crudely tracked by combining three weak traits. The 

tracker's boundaries are then modified to remove the rodent. 

Overlapping Histograms of Intensity (OHI), a new 

segmentation methodology, and edglet-based built pulses are 

a few of the recently introduced methodologies. Edge 

fragments known as edglets are broken edges. To coarsely 

localize the target, a sliding window approach is employed. 

Two significant contributions of Chien et al. [42] are found 

in: First, a multi-background model video object segmentation 

threshold choice technique is proposed. Then, diffusion 

distance measuring colour histogram similarity and motion 

cue from video object segmentation are combined to create a 

video object tracking framework based on particle filter with 

probability function. This framework is capable of handling 

abrupt changes in lighting, background noise, and non-rigid 

moving objects. The ideal threshold value for segmentation is 

chosen by the threshold decision algorithm. For improved 

tracking of non-rigid objects, a color-based histogram is added. 

In order to reduce computing complexity, a 1-D colour 

histogram is employed instead of a 3-D colour histogram. 

3. COMPARATIVE ANALYSIS

Tables 1 and 2 outline the properties of Two-stage and One- 

stage object detection models. 

In Table 1, we present the features of models detecting 

objects in two stages. By considering the size of the input 

image, region proposal method, optimization technique, and 

loss function, it gives a brief explanation of the object detector. 

A model for detecting objects with one stage is presented in 

Table 2. It gives a brief introduction of every object detector 

with the parameter input size of the image, optimization 

technique and loss functions. Analysis of object detectors is on 

fixed input size of image with SGD optimization technique. 

Here, sum error, sum square error, binary cross-entropy, 

confidence loss and Logits loss functions with binary cross-

entropy loss functions are used. 

Object detectors consider the size of input to be either fixed 

or arbitrary. The difference between predicted and the 

expected output is measured by using loss functions such as 

Bounding box, regressor loss, hinge loss categorization loss, 

etc. The Comparative analysis highlights Region Proposal 

Method used by object detectors. The bounding box loss 

function is used in each object detector. 

4. DISCUSSION

Studying the state-of-the-art system in literature survey we 

found the following shortcomings separately for two stage and 

single stage detectors. 

1) Shortcomings of Two stage detectors: Because of the

vast amount of space and time necessary for RCNN training, 

it is costly. Because features are recovered for each image 

region, image area extraction is a difficult task. Fast RCNN is 

slow due to selective search, and region proposal calculation 

is a bottleneck in SPP net. For real-time applications, faster 

RCNN training is inefficient, and performance for small and 

multiscale objects is inadequate. To address multiscale 

problems in FPN, a pyramid representation is required, which 

influences the performance of object detection. When it comes 

to real-time applications, the detection speed of mask RCNN 

is slow. 
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Detecting things in the real-time video is becoming 

increasingly important. It has certain challenges, such as low 

image quality, which leads to poor accuracy. Different video 

detectors are planned with temporal variables in mind to link 

objects over multiple frames and understand the object’s 

behaviors. For spatial-temporal suggestions, tubelet networks 

are used in video detectors for pre-processing. Deep feature 

flow, flow-guided feature aggregation, STMNs and flow-

guided feature aggregation are some of the techniques used for 

the same. 

Table 1. Comparative analysis of two stage detectors 

Model Year 
Input 

Size of image 

Region 

Proposal 

Method 

Optimization 

technique 

Loss/ Cost 

Function 

RCNN 

[11] 
2014 Fixed 

Selective 

Search 
SGD, BP 

Bounding box 

regressor loss, Hinge loss 

SPP- 

NET [15] 
2014 Arbitrary 

Selective 

Search 
SGD 

Bounding box 

Regressor loss, Hinge loss 

Fast 

RCNN [14] 
2014 Arbitrary 

Selective 

Search 
SGD 

Bounding box 

Regression loss categorization loss 

Faster 

RCNN [18] 
2015 Arbitrary RPN SGD 

Bounding 

Box regression loss, Categorization 

Loss 

FPN [20] 2017 Arbitrary RPN 
Synchronised 

SGD 

Bounding box regression loss categorization 

Loss 

Mask 

RCNN [21] 
2017 Arbitrary RPN SGD 

Categorization 

loss, Mask loss, Bounding box regression loss 

Table 2. Comparative analysis of one stage detectors 

Model 
Research 

Year 

Input 

Size of Image 

Optimization 

technique 
Loss/tion Cost unc- 

YOLO [22] 2016 Fixed SGD Sum Error 

YOLOv2 [23] 2017 Fixed SGD Sum Squared Error 

YOLOv3 [25] 2018 Fixed SGD 
Binary 

entropy 
cross 

YOLOv4 [43] 2020 Fixed SGD 
Binary 

entropy 
cross 

YOLOv5 [28, 29] 2020 Fixed SGD 
Logits Loss 

function with binary cross entropy 

SSD [30] 2016 Fixed SGD Confidence loss 

2) Shortcomings of one stage detectors: Low-resolution

objects are difficult to localize in Yolo v1 and v2. Without 

anchor boxes, they cannot anticipate more than one box for a 

given region. There may be a problem with using YOLOv3 to 

train niche models if it is difficult to collect large datasets, and 

it may also be ineffective for recognizing small objects. Only 

higher resolution layers in SSD allow for the detection of small 

objects, but these layers also contain low-level features like 

edges that are useless for categorization. 

5. CONCLUSION AND FUTURE SCOPE

Despite tremendous advancements in object detection over 

the previous years, most of the detectors are still a long way 

from the best performance. As its real-world applications grow, 

there will be a greater need for compact algorithms that can be 

used on mobile and embedded devices. This industry has 

drawn more attention, but the issue has not yet been resolved. 

In this article, we discussed how single-stage and two-stage 

detectors descended from one another. Two-stage detectors 

are slower and can be used for real-time applications, although 

typically more accurate. However, one stage detectors have 

grown similarly precise and substantially faster in recent years. 

In the future, lightweight and much more precise object 

detectors for video can be produced. 
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