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Designing encryption models for IoT deployments requires analysis of multiple network 

level constraints. These include, estimation of energy requirements, security strength, 

encryption & decryption delay, computational complexity, etc. A wide variety of models 

are proposed to perform these tasks, but most of them are either highly complex, or require 

higher energy levels for encrypting data samples. Moreover, these models are context-

independent, and cannot be used for application-specific deployments. To overcome these 

issues, this text proposes design of a novel secure and lightweight dynamic encryption 

bioinspired model for IoT networks. The proposed model initially uses an Elliptic Curve 

Cryptography (ECC) process for data security, and optimizes its performance via 

Bacterial Foraging Optimization (BFO). ECC parameters that are obtained via BFO are 

further fine-tuned using a Q-Learning based process, which assists in identification of 

context-specific parametric ranges for different network types. The combination of BFO 

with Q-Learning results in dynamic ECC curves, which can be used for context-specific 

deployments. Performance of the model was evaluated on different scaled networks, and 

compared with other state-of-the-art encryption models in terms of encryption delay, 

decryption delay, security level under different attacks, and energy consumption levels. 

Based on this comparison, it was observed that the proposed model showcased 8.5% lower 

encryption delay, 3.2% lower decryption delay, and 5.9% lower energy consumption 

while maintaining similar security levels. Due to these enhancements, the proposed model 

is useful for a wide variety of low complexity IoT deployments. 
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1. INTRODUCTION

As a result of advances in technology, Internet of Things 

(IoT) devices that are linked together are becoming 

increasingly widespread. Maintaining everyone's safety is the 

first and most important priority. When compared to the 

security of Internet of Things devices, the safety of 

transportation networks is on par, if not higher, on the priority 

scale [1]. Asymmetrical cryptosystems have been around since 

1986, when Miller [2] and Koblitz [3] originally developed the 

concept of elliptic curve cryptography (ECC), which stands for 

elliptic curve cryptography. There are several organizations all 

around the globe that have given ECC its stamp of approval, 

including NIST [4], ANSI [5], and IEEE [6]. There have been 

a few different proposals for ECC hardware implementations 

[7]. Two of these approaches are the multiplier and the adder, 

and they are used in the process of putting modular 

multiplication into action (MM). Using the Montgomery 

multiplication technique is another example of multiplier-

based architecture [8]. Another example is designing for a 

certain prime field. Interleaved multiplication is used to 

construct this adder-based design [9], which was described 

before. The central processing unit employs a Montgomery 

MM algorithm that has a multiplier that is r bits by r bits [10]. 

A multiplier that is n bits by n bits is used in the construction 

of the processors [11]. MM is a mathematical operation that 

incorporates both multiplication and quick reduction over a 

given prime field. It is essential to take into consideration the 

fact that the design based on multipliers calls for a substantial 

number of physical resources. 

Efficient cipher chaining (ECC) also makes use of modular 

inversion, which is a process that takes a significant amount of 

time (MI). One example of this is the implementation of 

algorithms for binary modular inversion in hardware-efficient 

computers. The MM and MI units of the processor's 11-bit 

adder function independently from one another. The IMM 
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approach is used by processors in order to do radix-4 booth 

encoding [12]. A radix-2 MM algorithm is used by the 

processor Durga et al. [13], Huang [14] in order to successfully 

complete MM while avoiding MI with projective coordinates. 

The software that is used for traditional cryptography 

algorithms has drawbacks, such as a high-power consumption 

and a lengthy processing time; nevertheless, these problems 

might be resolved with computational advancements. An ECC 

is similar to RSA in that it is a public-key cryptosystem, but 

because to developments in computers, it may be easier to use. 

The primary distinction between it and RSA is that it has the 

ability to evolve more quickly.  

Similarly work in Huang [15], Wei et al. [16], Abd El-Latif 

et al. [17], Li et al. [18], Mamvong et al. [19], Niu et al. [20], 

which propose use of multiple authority attribute-based 

encryption, blockchain based data access control ABE (DAC 

ABE), controlled alternate quantum walks (CAQWs), 

Decisional Bilinear Diffie-Hellman (DBDH), power efficient 

encryption, and key aggregation searchable encryption 

(KASE), which assist in improving performance of encryption 

under different use cases. Extensions to these models are 

discussed in Fotovvat et al. [21], Fotovvat et al. [22], Khan et 

al. [23], Hussain et al. [24], Khashan [25] which propose use 

of Lightweight cryptography (LWC), Key-Policy Attribute 

Based Encryption (KPABE), Secure Surveillance Mechanism, 

Certificate Based Signcryption with Proxy Re-Encryption 

(CBSRE), and Lightweight Proxy Re-Encryption, which 

assists in improving security performance for different use 

cases. These models must be validated for large-scale 

networks, and can be extended via use of Compressive-

Sensing-Based Lightweight Encryption [26-28], Ciphertext-

Policy Hierarchical Attribute-Based Encryption [29], which 

aim at incorporating lightweight encryption models for IoT 

network scenarios. This presents those who research 

cryptographic algorithms with a fresh and fascinating path of 

exploration to pursue. It is possible to use ECC keys that are 

smaller and yet provide the same degree of security as RSA. 

The security provided by ECC, which has 163 bits rather than 

RSA's 1024 bits, may be considered an alternative. In addition, 

electronic communications work especially well as a 

complement to wireless media such as smart cards and mobile 

phones, which helps to make ECC a perfect wireless 

communication protocol. It has been shown that the EC point 

multiplication algorithm is more time and resource efficient 

than the RSA exponentiation algorithm. Function of Normal 

Distribution Extracted from an Algorithm the Elliptic Curve 

Cryptography (ECC) standard incorporates key exchange, 

agreement protocols, digital signature (ECDSA), as well as 

other applicable asymmetric cryptographic primitives. The 

operation of point multiplication, which is the foundation of 

all ECC primitives, is also the operation that requires the 

highest amount of computational work to complete. When it 

comes to encrypting data samples, it was discovered that the 

vast majority of models are either too complicated or waste an 

excessive amount of energy. This is despite the fact that 

various models have been developed to do these activities. 

These models are not suitable for usage in app-specific 

deployments since they are not sensitive to the surrounding 

environment. Bhattacharya and Pandey [30], Bhattacharya and 

Pandey [31], Wang and Liu [32], Noura et al. [33], Deb et al. 

[34], Zhuang et al. [35], Al-Moliki et al. [36] discuss various 

issues and challenges related to incorporating the Internet of 

Things (IoT) and green technology, as well as different 

encryption methods and technologies for securing IoT devices 

and networks. They propose solutions such as "CEaaS: 

Constrained Encryption as a Service in Fog-Enabled IoT" and 

"A Single-Pass and One-Round Message Authentication 

Encryption for Limited IoT Devices" to enhance security in 

IoT. They also propose a "Verifiable Searchable Encryption 

Framework Against Insider Keyword-Guessing Attack in 

Cloud Storage" to improve the security of cloud storage [37]. 

In the next section of this article, we will provide our answer 

to these problems, which is the creation of an innovative, bio-

inspired dynamic encryption model that is both lightweight 

and secure for use in IoT networks. As a result, the objective 

of this article is to include bioinspired processes in order to 

offer security assurance for Internet of Things devices in a way 

that is as simple and uncomplicated for different use cases. 

 

 

2. PROPOSED SECURE AND LIGHTWEIGHT 

DYNAMIC ENCRYPTION BIOINSPIRED MODEL 

FOR IOT NETWORKS 

 

Based on the review of existing encryption models, it can 

be observed that most of these models are either highly 

complex, or require higher energy levels for encrypting data 

samples. Moreover, these models are context-independent, 

and cannot be used for application-specific deployments. To 

overcome these issues, this section proposes design of a novel 

secure and lightweight dynamic encryption bioinspired model 

for IoT networks. Flow of the model is depicted in Figure 1, 

where it can be observed that the proposed model initially uses 

an Elliptic Curve Cryptography (ECC) process for data 

security, and optimizes its performance via Bacterial Foraging 

Optimization (BFO). ECC parameters that are obtained via 

BFO are further fine-tuned using a Q-Learning based process, 

which assists in identification of context-specific parametric 

ranges for different network types. The combination of BFO 

with Q-Learning results in dynamic ECC curves, that can be 

used for context-specific deployments. 

 

 
 

Figure 1. Overall flow of the proposed light-weight 

encryption process 
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The model initially collects information about different 

ECC curves, that include but are not limited to ANSSI 

FRP256v1, BN (2, 254), Curve1174, Curve383187, E-382, M-

383, NIST P-224, secp256k1, etc. These curves have their own 

varying prime fields, binary fields, and Koblitz fields. 

For instance, the Curve1174 is represented via Eq. (1): 

 

𝑥2 + 𝑦2 = 1 − 1174𝑥2𝑦2 (1) 

 

Which can be represented via Figure 2(a), where a quad 

parabolic shape can be observed for different x & y sample sets. 

Similarly, the secp256k1 curve, which is used by Bitcoin for 

block-level encryptions can be evaluated via Eq. (2), and is 

depicted in Figure 2(b), as follows: 

 

𝑦2 = 𝑥3 + 7 (2) 

 

 
 

Figure 1(a). Representation of the ECC Curve1174 for 

different value sets 

 

 
 

Figure 2(b). Representation of the ECC secp256k1 curve for 

different value sets 

 

Based on these curve sets, it can be observed that for every 

value of x, the curve has 2 similar points on the Y axis. One of 

these points are used for encryption, while other is used for 

decryption process. The proposed model uses this 

characteristic of ECC in order to generate light-weight curves 

via BFO model, which works as per the following process, 

process. The proposed model uses this characteristic of ECC 

in order to generate light-weight curves via BFO model, which 

works as per the following process: 

·Initialize optimization parameters of BFO as follows: 

○Total number of bacteria particles used during 

optimization (Np); 

○Total optimization iterations for BFO (Ni); 

○Chemotaxis rate (Lc); 

○Rate at which particles regenerate (Lr); 

○Rate of elimination (Le); 

○Total available ECC curves and their parameters (Nc). 

·Initially generate bacterial swarm as per the following 

process: 

○Select a stochastic curve from the set of curves, and 

estimate its fields as per Eqns. (3), (4), and (5). 

 

𝑝 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑐 ∗ 𝑝𝑚𝑎𝑥 , 𝑝𝑚𝑎𝑥) (3) 

 

𝑏 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑟 ∗ 𝑏𝑚𝑎𝑥 , 𝑏𝑚𝑎𝑥) (4) 

 

𝑘 = 𝑆𝑇𝑂𝐶𝐻(𝐿𝑒 ∗ 𝑘𝑚𝑎𝑥 , 𝑘𝑚𝑎𝑥) (5) 

 

where, STOCH represents a Markovian stochastic process, 

used to generate numbers between given range sets, while p, b 

& k represents prime field values, binary field values, and 

Koblitz field values for the given curve sets. 

○The generated sub-curve is further processed if it follows 

the rule of ECC, that for every value of x, there should be 

exactly 2 values of y, which assists in encryption and 

decryption processes; 

○If the curve doesn’t follow these rules, then it is 

regenerated via Eqns. (3), (4), and (5) till the conditions are 

fulfilled for different value sets; 

○This new sub-curve is evaluated, and its fitness levels are 

estimated via Eq. (6): 

 

𝑓 =
1

𝑁𝑖
∑

𝑑𝑒𝑖 + 𝑑𝑑𝑖
𝑑𝑟𝑒𝑓

𝑁𝑖

𝑖=1

+
𝑒𝑒𝑖 + 𝑒𝑑𝑖
𝑒𝑟𝑒𝑓

 (6) 

 

where, de & dd represents delay needed for encryption & 

decryption, while dref represents combined encryption & 

decryption for the reference curve, while, ee & ed represents 

energy needed for encryption & decryption, while eref 

represents combined encryption & decryption energy for the 

underlying reference curve sets. 

○This process is repeated for all particles, and a particle 

fitness threshold is estimated via Eq. (7): 

 

𝑓𝑡ℎ =∑𝑓𝑖 ∗
𝐿𝑐 + 𝐿𝑟 + 𝐿𝑒

3 ∗ 𝑁𝑝

𝑁𝑝

𝑖=1

 (7) 

 

○Particles with f<fth are marked as ‘not to be reconfigured’, 

while others are marked as ‘to be reconfigured’. 

· Once initial configurations are generated, then all 

particles are scanned for Ni iterations, and the particles marked 

as ‘to be reconfigured’ are regenerated via Eqns. (3), (4), (5) 

and (6), which assists in generation of new curve sets. 

·At the end of each iteration, fitness threshold levels are 

recalculated, and the process is continued for Ni iterations. 

At the end of final iteration, select all curves that are marked 

as ‘not to be reconfigured’, and use a Q-Learning based model 

to identify optimal curve sets for different IoT use cases. To 

perform this task, setup target delay dt and target energy levels 

et that are required by the IoT deployment, and evaluate the 
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curve for N dummy communication requests. For each of the 

requests, calculate curve’s Q-Level via Eq. (8): 

 

𝑄 =
𝑑𝑒 + 𝑑𝑑

𝑑𝑒(𝑂𝑟𝑖𝑔) + 𝑑𝑑(𝑂𝑟𝑖𝑔)
+

𝑒𝑒 + 𝑒𝑑
𝑒𝑒(𝑂𝑟𝑖𝑔) + 𝑒𝑑(𝑂𝑟𝑖𝑔)

 (8) 

 

where, d(Orig) & e(Orig) represents original levels of delay 

and energy for given curve sets. For each of the encryption and 

decryption requests, evaluate reward factor via Eq. (9): 

 

𝑟 =
𝑄𝑖+1 − 𝑄𝑖

𝐿𝑟
− 𝐿𝑐 ∗ 𝑀𝑎𝑥(𝑄) + 𝑄𝑖 (9) 

 

where, Qi & Qi+1 represents current and next values of Q-

Levels. This process is repeated for 𝑁 requests and for each 

‘not to be configured’ curve sets. Variance levels of reward is 

estimated via Eq. (10): 

 

𝑣 =
∑ 𝑟𝑖 − ∑

𝑟𝑗
𝑁

𝑁
𝑗=1

𝑁
𝑖=1

𝑁
 

(10) 

 

Once this process is repeated for every curve, then a 

variance threshold is estimated via Eq. (11): 

 

𝑣𝑡ℎ = 𝐿𝑒 ∗∑
𝑣𝑖
𝑁𝑐

𝑁𝑐

𝑖=1

 (11) 

 

where, Nc represents number of curves used for the evaluation 

process. All curves that fulfil condition in Eq. (12), are 

selected for the IoT deployment, while others are removed 

from the selection process. 

 

𝑣 < 𝑣𝑡ℎ ∗ (𝐿𝑐 + 𝐿𝑟) (12) 

 

Based on this process, curves are selected for low energy 

and low delay operations. These curves were evaluated on 

different IoT networks, and their performance was compared 

w.r.t. standard encryption models in the next section of this 

text. 

 

 

3. STATISTICAL COMPARISON AND ANALYSIS  

 

The proposed model uses a combination of BFO with Q-

Learning to continuously optimize the ECC curve generation 

and selection process for IoT deployments. To validate 

performance of this model, it was evaluated on a standard set 

of following network configurations: 

Type of Channel: Wireless 

Type of Propagation: Two Ray Ground 

Type of Interface: Wireless Physical 

Used MAC: 802.16a 

Queue Type: Priority Queue with Drop Tailing 

IoT Nodes: 500 

Underlying router: TORA based routers 

Network Dimensions: 300m×300m 

Size of Packet: 500 bits per packet 

Interval of communication: 0.0005 seconds per packet 

Values for end-to-end communication latency, per-

communication energy consumption, packet delivery ratio 

(PDR) per-communication, and communication throughput 

are assessed based on these common wireless network metrics. 

The performance of the individual models used for validation 

is shown by their labels in the accompanying tables, which 

tabulate these data. The suggested model's performance was 

compared with respect to DAC ABE [16] and CBS RE [23], 

which helped to validate its performance under various 

Number of Communication (NC) sequence sets (Table 1). 

 

Table 1. Communication delay with the proposed encryption 

model averaged over different communication sets 

 

NC 
Delay (ms) 

DAC ABE [16] 

Delay (ms) 

CBS RE [23] 

Delay (ms) 

Proposed 

100 0.44 0.50 0.26 

150 0.52 0.60 0.31 

200 0.63 0.72 0.38 

250 0.72 0.83 0.43 

300 0.81 0.93 0.49 

350 0.90 1.04 0.54 

400 1.00 1.14 0.60 

450 1.09 1.24 0.65 

500 1.17 1.34 0.70 

 

 
 

Figure 2. Communication delay with the proposed 

encryption model averaged over different communication 

sets 

 

Based on this evaluation, and Figure 3, it can be observed 

that the proposed model showcased 18.5% lower delay when 

compared with DAC ABE [16], and 25.9% lower delay when 

compared with CBS RE [23], which makes it useful for high-

speed IoT network scenarios. This is due to incorporation of 

encryption & decryption delays during selection of sub-curve 

parameters, which assists in improving communication 

performance under real-time IoT communication sets. 

Similarly, the energy consumption can be observed from Table 

2 as follows: 

 

Table 1. Communication energy levels with the proposed 

encryption model averaged over different communication 

sets 

 

NC 
Energy (mJ) 

DAC ABE [16] 

Energy (mJ) 

CBS RE [23] 

Energy (mJ) 

Proposed 

100 6.25 7.19 3.73 

150 6.62 7.61 3.95 

200 6.95 8.00 4.15 

250 7.28 8.38 4.35 

300 7.62 8.76 4.55 

350 7.98 9.18 4.76 

400 8.36 9.61 4.99 

450 8.70 10.00 5.20 

500 9.03 10.38 5.39 
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Figure 3. Communication energy levels with the proposed 

encryption model averaged over different communication 

sets 

 

Based on this assessment and Figure 4, it can be seen that 

the proposed model demonstrated 28.3% and 34.2% reduced 

energy usage, respectively, when compared with DAC ABE 

[16] and R2, which makes it beneficial for high-lifetime IoT 

network situations. This is because real-time IoT 

communication sets help to improve communication 

performance by including encryption & decryption energy 

levels while choosing sub-curve parameters. Similarly, the 

throughput of these communications can be observed from 

Table 3 as follows: 

 

Table 2. Communication throughput with the proposed 

encryption model averaged over different communication 

sets 

 
NC Thr (kbps) 

DAC ABE [16] 

Thr (kbps) 

CBS RE [23] 

Thr (kbps) 

Proposed 

100 336.50 292.61 524.26 

150 340.83 296.38 531.01 

200 343.67 298.84 535.43 

250 346.67 301.45 540.10 

300 350.03 304.38 545.34 

350 353.49 307.39 550.73 

400 357.04 310.47 556.26 

450 360.85 313.78 562.19 

500 364.41 316.89 567.75 

 

 
 

Figure 4. Communication throughput with the proposed 

encryption model averaged over different communication 

sets 

 

The proposed model demonstrated 19.5% greater 

communication throughput when compared with DAC ABE 

[16] and 14.9% higher communication throughput when 

compared with CBS RE [23], which makes it ideal for high 

data-rate IoT network situations, as can be seen from this 

assessment in Figure 5. This is because real-time IoT 

communication sets help to improve communication 

performance by including processing delay levels and 

evaluating temporal performance while choosing sub-curve 

parameters. Similarly, the PDR of these communications can 

be observed from Table 4 as follows: 

 

Table 3. Communication PDR with the proposed encryption 

model averaged over different communication sets 

 

NC 
PDR (%) 

DAC ABE [16] 

PDR (%) 

CBS RE [23] 

PDR (%) 

Proposed 

100 98.92 99.02 98.97 

150 99.05 99.15 99.10 

200 99.17 99.27 99.22 

250 99.27 99.37 99.32 

300 99.36 99.46 99.41 

350 99.47 99.57 99.52 

400 99.59 99.69 99.64 

450 99.71 99.81 99.76 

500 99.83 99.93 99.88 

 

 
 

Figure 5. Communication PDR with the proposed encryption 

model averaged over different communication sets 

 

Based on this assessment and Figure 6, it is apparent that 

the proposed model demonstrated comparable PDR when 

compared with DAC ABE [16] and CBS RE [23], making it 

appropriate for real-time IoT network applications. Due to the 

adoption of high-efficiency encryption methods, which 

decrease packet losses by mitigating various network threats, 

the PDR is often high. As a result, the suggested model is 

extremely effective and can be used for IoT networks with 

lower complexity and improved energy efficiency and larger 

data rates, making it scalable for various network situations. 

 

 

4. CONCLUSION AND FUTURE SCOPE 

 

The proposed model uses a combination of BFO for 

estimation of initial ECC sub-curves, and optimizes it via 

continuous Q-Learning operations. The model uses encryption 

& decryption delay, encryption & decryption energy, and 

reference curve performance levels in order to identify 

efficient sub-curve sets. The proposed model therefore 

demonstrated 18.5% reduced latency in comparison to DAC 

ABE [16] and 25.9% lower delay in comparison to CBS RE 

[23], making it effective for high-speed IoT network situations. 

This is because encryption and decryption delays are taken 

into account while choosing sub-curve parameters, helping to 
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improve communication performance for real-time IoT 

communication sets. It is advantageous for high-lifetime IoT 

network situations as the proposed model's energy usage was 

28.3% and 34.2% less than that of DAC ABE [16] and [R2, 

respectively]. This is because real-time IoT communication 

sets help to improve communication performance by including 

encryption & decryption energy levels while choosing sub-

curve parameters. Secondary measures revealed that the 

proposed model had 19.5% greater communication throughput 

compared to DAC ABE [16] and 14.9% higher 

communication throughput compared to CBS RE [23], making 

it appropriate for high data-rate IoT network applications. This 

is because real-time IoT communication sets help to improve 

communication performance by including processing delay 

levels and evaluating temporal performance while choosing 

sub-curve parameters. When compared to DAC ABE [16] and 

CBS RE [23], the proposed model also showed comparable 

PDR, which makes it appropriate for real-time IoT network 

applications. Due to the adoption of high-efficiency 

encryption methods, which decrease packet losses by 

mitigating various network threats, the PDR is often high. As 

a result, the suggested model is very effective and suitable for 

low-complexity and high energy efficiency applications. 

Higher data rates on IoT networks make it scalable for many 

network situations. In future, the model’s performance can be 

optimized via integration of hybrid bioinspired models that 

will assist in improving parameter selection for different 

scenarios. The model must be validated w.r.t. large-scale 

network sets, and its performance can be further improved via 

deployment of other encryption techniques which will make it 

useful for large-scale network scenarios. 
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