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Tool condition monitoring is one of the emerging areas in the manufacturing industry. This 

paper proposes HDL simulator-based simulation model using Modelsim to detect and 

classify the tool condition using the hybrid network. The system uses multiple sensors for 

data collection from the CNC machine. Multiple sensor data such as vibration and 

temperature as well as actual machine parameters are taken into consideration for the 

system design. The data collected is pre-processed and fed to the self-organizing map 

(SOM) and a Hebbian network which is a hybrid model. The data is classified according 

to its range, and which are mapped to get the SOM neurons. The Hebbian network 

designed is the single-layer feedforward neural network. The recognition process is robust 

to the number of changes in the input samples. The system operates in training and testing 

modes. The tool condition is indicated in Matlab with a message window. The system 

correctly detects the tool condition, with a simulation accuracy of 97.16% which is 

promising and insists on hardware model development. 
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1. INTRODUCTION

Checkingthestateofcutting tools in the high-speed

machining (HSM) process is becoming increasingly popular 

these days. This is the key concern of the manufacturing 

industries which results in accuracy and precision during the 

manufacturing process. When the tool wear or breakage takes 

place, it reduces the production performance as the quality of 

the work piece is affected [1]. In the current era, intelligent 

TCM systems are developed to achieve automated machining 

systems. There are two ways to provide the estimation of the 

tool condition. One by analytical and the other is the 

experimental way where sensors are used to acquire the data. 

In industries, cost and maintenance time are 

increased,reducing the rate of production due to tool failure. If 

any tool gets failes during the operation, then the time for 

repair or the cost of replacing it with a new one is a costly 

process that need to be handled with utmost care. TCM are 

directly useful as they will reduce the system downtime as well 

as the intelligent TCMs inform quickly as far as the traditional 

methods. With this, the quality of the system is improved in 

real-time as well as in online/offline mode too [2, 3]. Table 1 

enlists various modes of operation of the TCM system. 

TCM can be designed using embedded systems for 

stationary cutting requirements. However, in the industries, 

the process is carried out for various tools and jobs by 

numerous machining techniques. So it is an important 

characteristic to consider the fast adaptability of the system to 

the current condition. A solution to this is using the 

programmable logic device (PLD), such as field-

programmable gate arrays (FPGAs). They have a huge 

improvement in the size, weight, and power consumption 

constraints as compared to embedded computing systems [4]. 

Table1. Modes of tool condition monitoring 

Offline Online Real-Time 

·Entails

interruption in 

the process 

·Using

inspection

equipment

·Process is not

interrupted

·Parameters are

measured at regular

intervals 

·Related to the tool

health 

·Process is

continuously

acquiring data

·regular time

intervals

·Latency is limited

·Employed in

adaptive control

The real-time TCM systems consist of various steps as 

illustrated in Figure 1. Stages consists of signal acquisition 

using sensors, pre-processing using various techniques such as 

Fourier analysis, time series, statistical analysis, etc. The next 

stage is classification and finally,the tool condition model is 

obtained. First, the system is trained for optimizing the 

selected sensors and the extracted data from them. This model 

is further used during real-time system monitoring.  

The acquired data can be measured with direct and indirect 

methods. Table 2 specifies the tool wear sensing methods and 

their ways. Direct methods use machine vision and an optical 

microscope to measure the tool wear. This method is an offline 

mode wherein the tool is taken out from the machine and the 

wear is measured [5, 6]. Using this direct method, the tool wear 

measures are generally reliable but time is increased and which 

leads to an increase in machine downtime. Direct approaches, 

however, cannot detect any unforeseen cutting tool damage. 

Hence indirect methods are employed, where immediate 
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action in real-time can be taken for the tool wear. In this 

method variables measured can be cutting forces, torque, 

vibration, acoustic emission, sound, and temperature.  From 

the above variable, the data is pre-processed and accordingly 

action for the machine tool can be taken [1]. Recent 

advancements show a wide range of techniques to assure the 

monitoring system's accuracy. Because of the contact between 

the tool and the workpiece, vibration change makes tools wear 

out more quickly. Almost 20% of the studies are carried out 

on vibration signals [7, 8]. A comprehensive comparison of 

indirect methods used for condition monitoring [2]. 

 

 
 

Figure 1. Real-time TCM model 

 

From the above-said literature, it is clear that the force 

sensors, vibration sensors, acoustic emission sensors, and 

temperature sensors are used individually or in a group. The 

group of sensors is called multiple sensors. A single sensor 

does not provide the complete information to predict the tool 

wear as it may have noise and pre-processing losses associated 

with it. Hence the multisensor approach is highly 

recommended. Because of this approach and the 

categorization of tool circumstances, considerably improves 

the prediction's accuracy [8]. 

 

Table 2. TCM sensing methods [9] 

 

Direct Method Indirect Method 

·Electric resistance 

·Optical 

·Radioactive 

·Vision System etc. 

·Cutting force 

·Vibration 

·Temperature 

·Torque 

·Acoustic emission 

·Sound 

 

In this paper,to improve the accuracy of TCM prediction 

multiple signals namely vibration and temperature are 

collected from the CNC machining process. The sensed 

parameter are discretized with the help of an Analog to digital 

converter(ADC) and applied to the TCM model for 

classification. Initially, they are passed through the window 

detector. The window detector gives the output in three 

categoriesnamely lower range, Higher range, and within a 

range with reference to the allowed range. Further, the 

histogram of lower range and higher range output is calculated 

and processed through Discrete Fourier Transform(DFT).The 

SOM-Hebb classifier uses the output of DFTs as its input. A 

hybrid network and feature vector serve as the foundation of 

the suggested system.SOM-Hebb classifier is an unsupervised 

neural network in which self-organizing maps (SOMs) are one 

of the most effective vector classifier models. From the input, 

this creates a nonlinear mapping. For the classification of data, 

a single-layer feedforward neural network is employed, in 

which features are extracted from measured data. Vibration 

and temperature signals are measured using an accelerometer 

and thermocouple respectively. These measured signals are 

input to a signal conditioning circuit from which digital output 

is obtained. The HDL code of the proposed system is written 

in the VHDL language. The sensed parameters are provided 

through text files for classification. HDL files are simulated 

using Modelsim. The classified output is also obtained in 

terms of text files. The obtained output is simulated and tested 

with the help of MATLAB. Simulation allows the designer to 

simulate the design with all the possible states and ensure that 

all input conditions will be handled appropriately.Using this 

software, a VHDL, Verilog, or mixed-language 

implementation can be verified along withMatlab. Figure 2 

shows the simulation model [10-20]. 

 

 
 

Figure 2. Simulation model 

 

 

2. TOOL CONDITION MONITORING ALGORITHM 

 

Figure 3 depicts the TCM process flow implemented in the 

proposed system.N samples are included in the input data 

array for each sensor, which is pre-processed to obtaina feature 

vector. The histograms are computed for both high and low 

frequencies, and then two DFTs are performed on each 

frequency band separately as part of the preprocessing. DFTs 

determine the histogram data's magnitude spectrum. To 

determine the state of the equipment, a D-dimensional feature 

vector is extracted from the magnitude spectrum and fed into 

a SOM-Hebb classifier. The magnitude spectrum allows the 

system to detect subtle variations in data amplitude. 

In order to monitor a process near the TCP of a CNC 

machine, virtual sensors (VS) can be utilised instead of 

physical ones. Soft sensors are a hybrid of actual sensor data 

and mathematical models used in control theory as state 

observers. By acting as a proxy for physical sensors, virtual 

ones gain access to information at locations that would be 

impossible to track otherwise. Not only are VS popular in the 

chemical sector, but also in mechanical engineering. Artificial 

intelligence algorithms are combined with the virtual sensor 

technique in other methods. However, in this scenario, it is 

important to train the AI models on a huge number of high-

quality data sets. 

The system requires data of N no. of samples, which is 

measured using temperature and vibration sensor. From this 

data, it becomes easier to segment the regions. Each data is in 

the range of 0 to 5. As the measured analog quantity is 

converted to digital using an analog to digital converter at the 

initial stage only. The measured data available in the text file 

is the decimal number. This is acting as stimulus input for the 

Modelsim. 

The system requires data of N no. of samples, which is 

measured using temperature and vibration sensor. From this 
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data, it becomes easier to segment the regions. Each data is in 

the range of 0 to 5. As the measured analog quantity is 

converted to digital using an analog to digital converter at the 

initial stage only. The measured data available in the text file 

is the decimal number. This is acting as stimulus input for the 

Modelsim. 

 
 

Figure 3. Flow diagram of tool condition monitoring 

 

2.1 High and Low range projection histogram 

 

The high and low range projection histograms of x(i), are 

calculated in the next pre-processing submodule. In this 

process, 1-D array of histograms is obtained. A histogram 

value is the sum of sample values along with the particular 

range. The terms high range projection histogram PH(i) and 

low range projection histogram PL(i) are defined as follows: 

 

𝑃𝐻(𝑖) = ∑𝑥(𝑖)

𝑛

𝑖=0

 (1) 

 

𝑃𝐿(𝑖) = ∑𝑥(𝑖)

𝑛

𝑖=0

 (2) 

 

2.2 Discrete fourier transform 

 

A 2D binary silhouette can be represented conveniently in a 

vertical projection histogram. A binary foreground region is 

projected onto a horizontal axis, and the number of foreground 

pixels in the vertical direction is counted to determine the 

value. Histograms of this type have found widespread 

application in tasks like group member localization and 

distinguishing pedestrians from their shadows. This approach, 

however, does not hold true when rotated. Pedestrians who are 

standing straight up may appear skewed and converged on a 

vanishing point in the image due to its sensitivity to skewed 

images or perspective geometry. 

To calculate the magnitude spectra FH(k) and FL(k) of PH(i) 

and PL(i) respectively, two DFTs are activated.In this stage of 

processing, nonlinear multipliers and functions are used to 

evaluate DFT. FH(k) and FL(k) are computed sequentially by 

two DFT circuits in order to lower circuit costs. 

 

𝐴(𝑘) = ∑ 𝑦(𝑛). 𝑐𝑜𝑠 (
2πnk

P
)

𝑃−1

𝑛=0

 (3) 

 

𝐵(𝑘) = ∑𝑦(𝑛). 𝑠𝑖𝑛 (
2πnk

P
)

𝑃−1

𝑛=0

 (4) 

 

Given is the magnitude spectrum equation: 

 

𝑋(𝑘) = √𝐴(𝑘)2 + 𝐵(𝑘)2 (5) 

 

2.3 Feature extraction 

 

The feature vector is created using the DFT result. The 

classifier network's each vector element ξi is defined as: 

 

𝜉𝑖 = {
FH(i), 0 < 𝑖 < 𝐷/2

F𝑉(i), D/2 < 𝑖 < 𝐷
 (6) 

 

The magnitude spectra FH(k) and FL(k) are identical because 

they lack phase information. Therefore, the recognition is 

robust for the tool condition monitoring when only the 

magnitude spectrum is used as a feature vector. 

 

2.4 SOM-Hebb classifier 

 

The SOM-Hebb vector classifier [4] is depicted in Figure 4. 

In the hybrid network, SOM is used. It's a Hebbian-trained 

feedforward neural network with a single hidden layer. The 

classifier takes in the D-dimensional vectors after they've been 

preprocessed and organises them into H categories. 

Self-Organizing Map: The SOM is made up of K=M×M 

neurons, each of which has a D-dimensional vector mi⃗⃗ ⃗⃗   known 

as the weight vector. Vector classification is performed by the 

SOM, while class acquisition is accomplished by a 

feedforward neural network.The operation of SOM is divided 

into two phases. 

i. Weight map trained in the learning mode with a collection 

of input vectorsMap is used in the recall phase. 

ii. The map is used during the recall phase. 

SOM is trained by repeatedly feeding it input vectors 

throughout the learning phase. Each input vector undergoes 

vector quantization, and the winning neuron is then 

determined by the SOM. Once this input vector is mapped to 

the victorious neuron, the cluster will be generated. The 

winning neuron can be used to identify the input vector's class. 

The neuron whose weight vector most closely matches the 

input vector is the winner. Once a winning neuron has been 

chosen, it and its neighbours' vectors will be adjusted so that 

they more closely match the input vector. 

The neighbourhood function has a topology-preserving 

nature in that two vectors that are neighbours in input space 

are represented on the map near to each other. One of the most 

essential characteristics of SOM is its topology-preserving 

nature. 

iii. Hebbian Learning Network: Hebb network deals with 

the association between neurons and classes. Training vectors 

and testing data τ0, τ1 ..... τH-1 indicating the class of the given 

vector, are given to the network successively during the 

learning phase. A training vector selects one of the neurons as 

the winner, and one of the winning information signals ωk is 
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set to '1'. If strong synchronization is found between two 

signals, the winner signal activated by the input is connected 

to the corresponding output node (OR gate) indicated by the 

teaching signal. Because the class may have numerous vector 

clusters, the output node may contain multiple ωk signals. 

 

 
 

Figure 4. SOM-Hebb classifier 

 

iv. Neuron Culling: There are some inefficient neurons, if 

they become winners, categorization fails. To avoid this, 

ineffective neurons are culled after training; their weight 

vector components are set to a big value, and therefore they do 

not become winners. 

 

 

3. MULTI-SENSOR MONITORING SYSTEM 

EXPERIMENTAL SETUP 

 

An Arduino development board was chosen as the hardware 

platform for interface to meet the industrial demand for 

reconfiguration, latency, flexibility, and an easily 

implementable monitoring system. These sensors are 

interfaced using a wired medium for data collection. Multiple 

sensor data sets have been collected, and a local database has 

been created to host and handle these data sets. for further data 

fusion and analysis. After data collection, the simulation part 

is implemented using the HDL simulator Modelsim. Two 

types of sensors were used in this investigation to measure the 

vibration and temperature profiles of the CNC milling 

machine. 

Experiments were conducted using a computer numerically 

controlled machine for cutting. The experiment used cast iron 

workpieces throughout. It is between 150 and 200 in BH 

strength (kJ/m3). The tests were conducted with the mounting 

configuration of the workpiece in mind. The product was 

shipped in a 56.40mm inner diameter hollow pipe. Prior to 

cutting, the item was face milled to smooth out any 

imperfections in the surface. All trials were performed with 

dry inserts with an automatic condition setting of 35% feed 

rate, 25% fast override, 100% spindle override, and 1.0 on the 

handle step ride.In order to collect information for tool 

condition monitoring, 150 machining tests were conducted 

under different situations, including those for cutting speed, 

feed rate, and the cutting tool itself. The cutting instrument is 

trapezoidal in form, and it features two inserts. 

Vibration signals produced during the cutting process were 

detected using the MPU -6050, which is a combination of a 3-

axis gyroscope and a 3-axis accelerometer on the same silicon 

chip, along with an integrated Digital Motion Processor that 

handles complicated 6-axis Motion Fusion algorithms. A 

thermocouple was used to detect temperature signals 

generated throughout the process. Figure 5 shows the 

experimental setup. 

 

 
 

Figure 5. The experimental setup 

 

 
a) Normal 

 
b) Partial wear c) Severe wear 

 

Figure 6. Processed job states 

 

The data acquired from the above test was stored in the local 

memory of the computer for further pre-processing and 

classification algorithm design. Figure 6 shows states of the 

jobs in the normal and wear condition generated from the 

cutting tool. 

 

 

4. MATLAB/MODELSIM CO-SIMULATION OF TCM 

SYSTEM 

 

To design the effective proposed system for tool condition 

monitoring a SOM-Hebb classifier is applied and the 

simulation work is carried out in HDL simulator Modelsim. In 

simulation classification of the tool is tested, and then the 

Matlab platform is used for data representation.  

Figure 7 shows the ModelSim block diagram. The 

simulation is implemented using VHDL code which runs the 

functions of projection histogram, DFT, and SOM-Hebb 

classifier. Input to Modelsim is given from text files 

containing real values.The total data in the text file contains 
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256 samples. A totalof 32 neurons are generated from 

vibration and temperature signals individually.The simulation 

is divided into two modes: learning and testing.Ideal trained 

data set is first generated and then the test files are given for 

classification.The SOM network had 255 training iterations, 

while the Hebb network had 126. 

Figure 8 shows that when training and testing data are 

identical, the histogram and DFT seem very similar. Figure 9 

shows the histogram shift and DFT magnitude when the 

number of training and testing samples is more than 12. In 

Figure 12a), the entire Modelsim simulation is shown. After 

the initial phase of training, the clock is applied and 

categorization begins. When the input data matches the 

learned data, the SOM-Hebb classifier returns the value 1. This 

is denoted in Matlab as "system matching with the trained 

data" in the window. 

 

 
 

Figure 7. Framework of modelsim based TCM system 

 

 
a) Histogram 

 
b) DFT 

 

Figure 8. Output waveform for same training and Test data 

 

 
a) Histogram 
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b) DFT 

 

Figure 9. Output waveform for unequal training and Test data 

 

The accuracy of the TCM system is verified through 

experimentation. As was noted before, the method was 

designed to offer a sample clock synced to DFT computation 

so that the output text files are updated first in the learning 

mode. In the experiment, ModelSim was employed for pre-

processing and keeping the trained data set ready. Further for 

each job, 256 samples were collected fora duration of 150sec. 

These data samples were acquired and written to the text 

documents. This process was repeated for 150 jobs. Obtained 

30 datalog files, each of which contains 256 samples, were fed 

to a learning program executed on a PC as the training data. 

Table 3 represents the percentage error of the samples and the 

match and mismatch of the number of samples with respect to 

the nature of the job. DFT Magnitude for the lower range 

varies when the number of lower range samples is increased 

and vice versa for the higher range too. Figure 10 gives the 

histogram classification where lower and higher histogram 

represents the range of the samples which are having errors. 

The available training data from ModelSim were available in 

32-D whose mean and median values with respect to job 

nature are represented in Figure 11. When the tool is under 

severe wear, the classifier output range changes and which 

itself results in the weak neuron, perturbation in spindle speed, 

feed rate, and depth of cut are not added during training. 

Perturbation was added during the process of data acquisition 

by changing spindle speed, and feed rate. The first test used 

training data without perturbation. The recognition rate was 

96.4%. 

 

Table 3. Nature of JOB and DFT computation 

 
Test 

Number 

Number of low 

Level samples 

Number of samples 

within range 

Number of High 

level samples 

DFT Magnitude mean Nature of 

Job 

% 

Error Lower DFT Higher DFT 

Job 1 0 256 0 590.59 590.59 Normal 0 

Job 2 23 233 0 536.55 590.59 Severe Wear 8.98 

Job 3 0 256 0 590.59 590.59 Normal 0 

Job 4 0 256 0 590.59 590.59 Normal 0 

Job 5 0 256 0 590.59 590.59 Normal 0 

Job 6 0 256 0 590.59 590.59 Normal 0 

Job 7 0 256 0 590.59 590.59 Normal 0 

Job 8 0 256 0 590.59 590.59 Normal 0 

Job 9 0 256 0 590.59 590.59 Normal 0 

Job 10 0 256 0 590.59 590.59 Normal 0 

Job 11 0 256 0 590.59 590.59 Normal 0 

Job 12 0 179 77 590.59 411.58 Severe Wear 30.07 

Job 13 0 256 0 590.59 590.59 Normal 0 

Job 14 0 256 0 590.59 590.59 Normal 0 

Job 15 0 256 0 590.59 590.59 Normal 0 

Job 16 0 256 0 590.59 590.59 Normal 0 

Job 17 6 250 0 590.59 590.59 Partial wear 2.34 

Job 18 0 256 0 590.59 590.59 Normal 0 

Job 19 0 256 0 590.59 590.59 Normal 0 

Job 20 0 256 0 590.59 590.59 Normal 0 

Job 21 0 256 0 590.59 590.59 Normal 0 

Job 22 0 256 0 590.59 590.59 Normal 0 

Job 23 0 256 0 590.59 590.59 Normal 0 

Job 24 0 256 0 590.59 590.59 Normal 0 

Job 25 0 256 0 590.59 590.59 Normal 0 

Job 26 0 256 0 590.59 590.59 Normal 0 

Job 27 0 250 3 590.59 590.59 Partial wear 1.17 

Job 28 3 250 4 590.59 590.59 Partial wear 2.73 

Job 29 0 256 0 590.59 590.59 Normal 0 

Job 30 0 256 0 590.59 590.59 Normal 0 
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Figure 10. Histogram and nature of job 

 

 

Table 4. SOM-Hebb classifier recognition rate 

 

SOM 

size 

Training Test Training Test 

Average 
A Data 

B 

Data 
B Data 

A 

Data 

16 × 16 96.4% 97.92% 97.16% 

 

 
 

Figure 11. SOM-Hebb classifier levels 

 

 
 

Figure 12. Simulation results of a) output waveform of the 

classification using Modelsim b) Output of classification 

using Matlab 

 

 

5. CONCLUSIONS 

 

Presented a system of tool condition monitoring based on 

SOM and Hebb hybrid vector classifier. The suggested 

system's feature vector was time-invariant, and recognition 

was unaffected by changes in small input. The SOM-Hebb 

classifier was given a novel learning strategy in this research, 

where perturbed data is also verified. This method proposes a 

memoryless system which intern reduces the size and 

ultimately speed of the system. The whole recognition 

algorithm is implemented in HDL simulator Modelsim and 

tested its functionality. The system was designed to recognize 

vibration and temperature change and tested for 150 sets of 

data containing 256 samples each. The proposed systemcarries 

out classification at a speed of 256 samples/s with a 

recognition accuracy of 97.16% (Table 4). 

 

 

6. FUTURE SCOPE 

 

The simulation results demonstrated that implementing a 

learning strategy can dramatically improve the system's 

recognition accuracy. The proposed strategy is easy to 

implement and very effective. The eventual goal is to 

synthesise such a system on FPGA and put it through its paces 

in terms of hardware performance and configurability testing. 

The reaction time and sliced area will be provided precisely by 

the hardware-implemented system. As on-chip learning is not 

currently included in simulation, it is proposed that it be 

implemented in the hardware in the following section. Users 

will be able to adaptively reinforce the system's learning 

against a specific data set that is known to induce false 

recognition thanks to on-chip learning. As a result, there is 

room to enhance precision. 
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