
Analogical Study of Activation Concept in Neural Networks with Neat- Python Module

Nishit Kaul1 , Sameer Kaul2 , Majid Zaman3 , Waseem Jeelani Bakshi4 , Sheikh Amir Fayaz2*

1 Jhonson Space Center, NASA Pkwy, Texas 77058, US
2 Department of Computer Sciences, University of Kashmir, Srinagar 190006, J&K, India
3 Directorate of IT & SS, University of Kashmir, Srinagar 190006, J&K, India
4 Department of Computer Sciences and Engineering, University of Kashmir, Srinagar 190006, J&K, India

Corresponding Author Email: skh.amir88@gmail.com

https://doi.org/10.18280/ria.370201 ABSTRACT

Received: 15 February 2023

Accepted: 31 March 2023

Determining real-time machine simulation and functionalities of complex AI Engines is

difficult to comprehend and is rarely discussed. We present a technique to analyze the

workflow of one such engine, the NEAT engine, one of the fundamental and robust training

engines in the current machine learning scenario. Computer Vision also presents a great

approach towards working in real-time speedy functioning virtual simulators and visual

platforms, whereas NEAT is not specialized in the same, but can perform to the best of the

extent in the present day Machine Learning aspect. Technologies like Python, PyGame, and

CsV were used to facilitate the research. So far, we have tested both the frameworks on real

time cases, and it is safe to say that the NEAT module has presented an accurate trajectory,

besides greater time complexity. Thus, we not only evaluate the accuracy but the other key

factors as well. This study demonstrates that NEAT has the ability to address other difficult

issues in the future and can produce excellent outcomes with a relatively small population.

Robotics, artificial intelligence for video games, natural language processing, and

healthcare are some of the potential future applications for NEAT.

Keywords:

activation function (ω), trigonometric ratios,

mathematical detection, neural networks,

NEAT, PyGame, CsV

1. INTRODUCTION

Flappy Bird is a popular mobile game that was released in

2013. The objective of the game is to guide a bird through a

series of pipes without touching them. The bird can be

controlled by tapping the screen, causing it to flap its wings

and gain altitude.

One approach to designing an AI agent that can play Flappy

Bird is to use the NEAT (NeuroEvolution of Augmenting

Topologies) algorithm. NEAT is an evolutionary algorithm

that evolves neural networks with complex topologies by

adding and removing nodes and connections.

To apply NEAT to Flappy Bird, we can represent the game

state as inputs to a neural network. These inputs could include

the bird's height, the distance to the nearest pipe, and the height

of the opening in the pipe. The neural network would then

output a single value indicating whether the bird should flap

or not.

During each generation, a population of neural networks is

created and evaluated by playing Flappy Bird. The networks

that perform the best are selected to reproduce and create a

new generation of networks. Through this process of selection,

reproduction, and mutation, the neural networks evolve over

time to become better at playing Flappy Bird.

The NEAT algorithm has been successfully applied to

Flappy Bird, resulting in AI agents that can achieve high

scores and outperform human players. This demonstrates the

power of evolutionary algorithms and their ability to solve

complex problems.

The machine learning approach known as NEAT

(Neuroevolution of Augmenting Topologies), developed by

Kenneth O. Stanley, involves training a neural network using

evolutionary techniques [1]. Using an evolutionary algorithm,

the best-performing networks are chosen from a population of

neural networks with varied topologies (i.e., different numbers

and configurations of neurons and connections) to breed and

generate the following generation of networks.

In the well-known smartphone game Flappy Bird, the user

must lead a bird between the spaces between ordinarily placed

pipes. It's a popular game that was first developed for mobile

platforms [2]. Its only goal is to maintain the player or bird's

life, extending as far as possible by avoiding contact with the

other pair while navigating a space between two pairs. Figure

1 below depicts the various game phases.

The game's gameplay is extremely straightforward: at every

moment, the player has a choice between two options:

touching the screen to cause the bird to fly higher or doing

nothing to cause it to drop [3]. By modifying the connections

and weights inside the network through evolution, NEAT

might be used to train a neural network to play the Flappy Bird

game.

The network would receive information from the game

(such as the position of the bird, how far away the next barrier

is, etc.), and it would output bird actions (such as jumping or

not jumping). The evolutionary algorithm would rate how well

the network performed in the game and use that score to pick

the top-performing networks to breed and produce the

subsequent generation. With the intention of eventually

creating a neural network that can play the Flappy Bird game

at a high level, this procedure would be repeated over multiple

generations [4]. The major contribution of this study is to

understanding the concepts of Entity Size, Generative Index,

Revue d'Intelligence Artificielle
Vol. 37, No. 2, April, 2023, pp. 249-256

Journal homepage: http://iieta.org/journals/ria

249

https://orcid.org/0000-0002-0138-1672
https://orcid.org/0000-0003-0911-0073
https://orcid.org/0000-0003-1070-8195
https://orcid.org/0000-0003-4848-0368
https://orcid.org/0000-0001-6606-0864
https://crossmark.crossref.org/dialog/?doi=10.18280/ria.370201&domain=pdf

Reaction Time, and activation functions. To develop an

understanding of essential artificial intelligence basic

principles and the right neural network process.

Figure 1. General phases of the Flappy Bird game

2. LITERATURE SURVEY

Numerous researchers used a variety of methodologies,

including neural networks (Tensor flow), reinforcement

learning, neuro-evolutionary methods, and others to contribute

to Flappy Bird. This paper describes a few of the brief

investigations by several researchers.

In order to create autonomous virtual players utilizing the

NEAT neuro-evolutionary method to generate an agent that

can play the Flappy Bird game, this research [5] suggests a

minimal training technique. The simplest neural network

architecture capable of playing the game flawlessly was

discovered using NEAT. In order to achieve proper

representation of the issue in comparison to the actual game,

the fitness function and scenario modelling were set. A

weighted average based on several circumstances and

scenario-specific components makes up the fitness function.

The method has a short convergence time, a low complexity

network, and ideal game behaviour by combining the minimal

training approach, a representative fitness, and NEAT. The

authors of this study [6] apply a Reinforcement Learning

model to the smartphone game Flappy Bird that develops

control strategies based on visual observations and feedback

from when the bird hurts an object. The authors use a general

approach that trains the agent to make the proper choice at any

time during the game based on the raw pixel values of the

game frames. In this study, authors use a kind of Q-Learning

to train a Flappy Bird agent to fly and navigate obstacles while

they also look at the effects of image preprocessing and other

strategies to shorten training time and increase the rewards the

agent receives.

This paper [7, 8] illustrates how to generate AI using GA

and DNN to build an AI that can win the Flappy Bird game.

The neural network is a simple dense neural network with one

layer of concealing. The application of GA, especially the

mutation of the weight vector, shows its importance for

attaining the goals of the AI. In this paper, each bird starts out

with an established network. The genetic algorithm, which

also oversees the process of mutation, regulates the generation

of the subsequent population. After a predetermined number

of repetitions, the network finally develops the mutational

strategies necessary to win the game.

This paper [9] presents the development and evaluation of

an artificial intelligence game-playing agent using genetic

algorithms and neural networks. The agent is designed to learn

optimal gameplay strategies for the popular "Flappy Bird"

game by safely avoiding obstacles and progressing through the

levels. The study investigates the impact of varying parameters

such as the number of neurons on the hidden layer, gravity,

speed, and gap between obstacles on the learning process. The

gameplay is divided into two difficulty levels to enable a

detailed analysis of the learning process. The Phaser

Framework is utilized for HTML5 programming to introduce

real-life factors such as gravity and collision. The Synaptic

Neural Network library is adopted to implement neural

networks and avoid the need to create a neural network from

scratch. The machine learning algorithm employed in the

study is based on the concept of Neuro-Evolution, which uses

algorithms like genetic algorithms to train artificial neural

networks. Overall, the study provides insights into the

potential of using genetic algorithms and neural networks to

develop effective game-playing agents.

This paper [10] examines autonomous controllers for the

mobile game Flappy Bird. Three controllers were created and

tested: a manually-tuned controller, an optimization-based

controller, and a model-based predictive controller (MPC).

The optimization-based controller scored the highest,

followed closely by the MPC, while the manually-tuned

controller scored the least. The choice of planning horizon was

critical for achieving high scores. The MPC provided the best

compromise between performance and computation speed

without requiring elaborate tuning.

This study [11] proposes the use of deep Q-learning to train

a model to pass obstacles in the game "Flappy bird". An Image

Translation Process and Deep Q-Learning Algorithm were

developed to improve model performance. The game

background was removed to speed up convergence. After 50

thousand experiments and data recording, the model was able

to pass through the third pipe. A total of 2 million attempts

were made, which took about 30 hours of experimentation.

The study suggests that the proposed model could be adapted

for other reinforcement learning tasks in the future.

Authors in this paper [12] proposed using artificial

environments and games to test pathfinding and search space

optimization algorithms. They chose "Flappy Bird" as an

environment and implemented two algorithms:

NeuroEvolution of Augmenting Topologies (NEAT) and

Reinforcement Learning (RL). NEAT algorithm showed

improved performance with larger initial populations. RL

algorithm used a Deep Q-learning Network and remembered

the state, action, and reward. The goal was to compare the

performance of the algorithms based on how quickly the agent

could differentiate between rewarding and hostile actions. The

study demonstrates the usefulness of game environments for

testing AI algorithms.

Overall, these papers demonstrate that the NEAT algorithm

is an effective approach for training AI agents for Flappy Bird.

It can produce agents that achieve high scores and outperform

human players. However, there is ongoing research to improve

the performance of evolutionary algorithms for this game and

explore their potential in other games and applications.

Since accuracy was not taken into account in any one of

these experiments, this conclusion can be drawn. This

encourages us to use the NEAT algorithm to focus on the

accuracy parameter without first examining how accuracy

would affect other parameters like time complexity and other

factors.

250

3. METHODOLOGY

The methodology of Flappy Bird is relatively simple

(Figure 2). The player controls a bird, which is constantly

moving forward, by tapping the screen or pressing a button to

make the bird flap its wings and fly upwards. The objective of

the game is to navigate the bird through a series of pipes

without hitting them. Each time the bird successfully passes

through a pipe, the player earns a point. The game ends when

the bird collides with a pipe or the ground. Being Precise, we

have used a particular configuration locker file, trained

weights and configured the NEAT-Algorithm to our needs.

This is very simple as all other developers do, but the main

structure and framework, aim rather is to prove the NEAT may

look like an ancestor to new robust models, but it’s not

obsolete [13-16].

Figure 2. General flowchart of the implemented

methodology

The game mechanics of Flappy Bird are designed to be

challenging and addictive, with the player needing to have

quick reflexes and good timing to navigate the bird through the

gaps in the pipes. The game has simple graphics and sound

effects, but the difficulty level and the addictive gameplay

make it a popular choice among casual gamers.

The methodology of Flappy Bird can be summarized as

follows:

Simple game mechanics: The player controls a bird by

tapping the screen to make it fly, with the objective of avoiding

pipes and earning points.

Challenging gameplay: The game is designed to be difficult,

with the player needing to have quick reflexes and good timing

to succeed.

Addictive qualities: The game is designed to be addictive,

with players wanting to keep playing to improve their score

and beat their high score.

Simple graphics and sound effects: The game has basic

graphics and sound effects, but they are effective in creating

an immersive gaming experience.

Without explicitly constructing the network architecture or

manually adjusting the connections and weights, NEAT

enables the training of neural networks to play games. Instead,

the evolutionary algorithm takes care of these tasks

automatically, letting the network experiment with the game

and learn how to play it. Following are the steps we take to

initialize and set up the environment.

3.1 Initialization

The popular Flappy Bird game was developed; it contained

a few obstacles that the user's taps were supposed to help the

flying bird navigate through. By teaching an AI Engine to

perform a classical masterwork, we give a thorough analytical

analysis of AI process. In this instance, we have an initial

entity to comprehend the methodology and procedure. Let's

say that thing is a Bird_Y (Figure 3) in an Environment (Ĵ).

Figure 3. Flappy Bird representation

We used the classical method of giving coordinates to a

particular engine X, in this case cored upon NEAT. Keep in

mind that these heights are not always constant. In order for

the engine to relate to each coordinate of the impediments, we

train it to reproduce itself with every data coordinate.

The engine employs the function of 𝑇𝑎𝑛 𝐻, where 𝐻 is the

obstruction's height, and uses it as the activation function. It

then calculates the generative index (k) (obstruction

generation rate), utilizing both size estimation and

randomizing the function of 𝑇𝑎𝑛 𝐻 . The formula can be

represented as follows (1):

𝛥 𝑘 = 𝑇𝑎𝑛 𝐻 . 𝑆 [𝐻 + 𝜔(𝑆)] (1)

where 𝑘 is the generative index, 𝑇𝑎𝑛 𝐻 is the function of

height and 𝑆 is the size estimation on past records. ω is the

omega of 𝑆 i.e. factorial value of the size and height. This was

the case of height estimation. Now, to detect the obstruction,

the engine uses Bird_Y by sending the above activation

function to every coordinate and detecting the perfect 𝑇𝑎𝑛 𝐻

value. In this way, the engine is able to detect the obstruction.

Below table (Table 1), shows the ratio of the activation

functions with different bird generations. In the classical

Flappy Bird game, we have seen that there is no particular end

to the game, even anyone may get old playing that [17-19]. To

revise here, Flappy Bird was a classical icon, known for it’s 2-

251

D physics and very-minute mechanical_features. The game is

very constant as you progress to the never-ending end. During

research, we observed that the speed_mechanics remain very

common in every progressing stage, but the pole-height

dynamics keep on changing, which are very much defined in

the algorithms.

Table 1. Ratio Functions with different bird generations

Gen_ID
Rate

Index

Ratio to Activation

Function
Pole_Height_Reaction

Bird_Height(+ve for above pole) (-ve for below

pole)

Bird_Y:

1
1 1:1 9.0(0.80s) +3.0, -2.3

Bird_Y:

2
3 1:3 9.3(0.60s) +2.2, -0.1

Bird_Y:

3
5 1:5 9.88(0.46s) +1.9, -2.2

Now, we can see the proof of this being a reinforcement

learning method, the results get better with each new

generation, but it is crucial to note that the Bird Y:2 has the

most challenging environment, which show the gameplay

remains balanced at the start and end, with a flux in- the middle,

the part where most of the players get eliminated. The flux, too,

in pole heights, which creates a very short space for the bird to

fly, evident from the last column of the Table 1 above [20].

3.2 Environmental setup: Flappy Bird

The steps that must be taken in order to set up the

environment are as follows:

1. Create a development environment: We set up Python

and the tools required, such as Pygame and Pyglet, to create

the Flappy Bird game and execute the NEAT algorithm.

2. Build the Flappy Bird game: We build up the user

input management, visuals, and game logic for the Flappy Bird

game. A game creation library like Pygame or Pyglet was used

for this.

3. Define the neural network's inputs and outputs: The

input and output parameters for the neural network that

manages the Flappy Bird game must be chosen. The position

of the bird, the distance between obstacles, and other

information are inputs. The output was a binary value that

indicated whether or not the bird should jump.

4. Implement the NEAT algorithm: The NEAT

algorithm, which entails generating a population of neural

networks with various topologies, assessing their

performance, choosing the best-performing networks to breed

and generate the following generation, and repeating this

process over a number of generations, implemented in Python.

5. Train the neural network: After implementing the

NEAT method, we must train the neural network by playing

the Flappy Bird game and modifying the connections and

weights within the network using the NEAT algorithm. This

can be accomplished by repeatedly running the game, feeding

the neural network data from the game, and then assessing and

enhancing the network's performance using the NEAT

algorithm.

Once the neural network has been trained, we can test its

effectiveness by running the Flappy Bird game and observing

how well it functions. To enhance the performance of the

network, we might have to tweak the NEAT settings or other

factors.

3.3 Neural network: Flappy Bird

These general procedures must be followed in order to

create a neural network for NEAT-Flappy Bird:

1. Define the network's inputs and outputs: The input

and output parameters for the neural network that will operate

the Flappy Bird game needed to be chosen. The position of the

bird, the separation between obstacles, and other information

are inputs.

2. Create a population of neural networks: Using the

specified inputs and outputs as the network's input and output

layers, we had to build a population of neural networks with

various topologies. The number of hidden layers and the

number of neurons in each layer could be included in the

network structure.

3. Initialize the weights and biases of the networks:

Because these values are altered throughout training, we had

to initialize the weights and biases of the networks randomly.

4. Training the neural networks: To train the neural

networks, we had to play the Flappy Bird game while

modifying the connections and weights in the network using

the NEAT algorithm. This can be accomplished by repeatedly

running the game, feeding the neural network data from the

game, and then assessing and enhancing the network's

performance using the NEAT algorithm.

The NEAT method was used to pick the top-performing

networks after the neural networks had been trained in order

to breed and create the following generation of networks.

Using the NEAT method, we must repeatedly train the neural

networks across a number of generations in order to assess and

enhance their performance. Since, this is a Reinforcement-

Learning based method, repetitive analysis and

feedforward_configurations are to be made. Furthermore, we

did not extend the cycle of 3-repetitive conjunctions in the

network_modification process. Yes, it is a hectic process

during the initial initialization process, and weight collection,

but an expert would know that no generic-process under the

umbrella of Reinforcement-Learning is straight-forward and

uni-processed [21]. Also, it is essentially a problematic

situation when you deal with both NEAT, and NN hand-in-

hand, as there are certain weight-cycles to go through in the

process. Furthermore, the newer process of gradient-boosting

has a reduced number of cycles to go through. Hereafter,

NEAT and NN would have got a very less number of retries,

if the quality of data was greater. Further, CV has got a

complete lead here due to its procession on a certain

caffe_model, which helps it to go from the second or even

very_first try of the program [22-24].

4. EXPERIMENTAL ANALYSIS AND RESULTS

The purpose of the analytical experiment was to

demonstrate the continued relevance and effectiveness of the

252

NEAT algorithm in its original and robust form. The NEAT

algorithm, which stands for NeuroEvolution of Augmenting

Topologies, is a machine learning technique that is used to

evolve artificial neural networks. The goal of this experiment

was to show that NEAT is still a viable option for real-time

applications, and to compare its performance to that of a

Generic CV model.

To carry out the experiment, we tested both the NEAT and

Generic CV models around 15 times with different input rates

on serial_baud. Then we compared the results and included the

two best results in both cases. The NEAT algorithm was found

to work repeatedly on evolution, which increases the time

complexity compared to the Generic CV model.

One of the key findings of the experiment was that NEAT

is still effective in real-time applications, despite the

increasing availability of modern styled visual forms of

services in the industry. The results showed that the NEAT

algorithm was able to adapt and evolve to different input rates,

and that its performance was comparable to that of the Generic

CV model.

However, we did note that the NEAT algorithm has a higher

time complexity compared to the Generic CV model. This

means that the NEAT algorithm may take longer to process

data and produce results, which could be a potential drawback

in certain applications.

Overall, the experiment demonstrated the continued

effectiveness of the NEAT algorithm in its original and robust

form, and showed that it is still a viable option for real-time

applications. We suggested that future studies could focus on

optimizing the time complexity of the NEAT algorithm, and

on exploring its potential applications in other fields. The

results of this experiment could be useful for developers and

researchers who are interested in using machine learning

techniques for real-time applications.

Figure 4. Mutations in network

The figure displayed as Figure 4 represents the mutations

that are associated with discrimination in the proper schematic

neural network. The schematic neural network is a visual

representation of a computational neural network, showing

how different parts of the network are connected to each other.

In this case, the figure shows how specific mutations within

the neural network can impact its ability to discriminate

between different inputs. These discriminatory mutations are

highlighted in the figure, showing how they alter the

connections within the network.

To better understand the impact of these mutations on the

behavior of the network, a demo of the trajectory of a flappy

bird is shown in Figure 5. This demo shows how the bird's

trajectory can vary based on its position within the game. For

example, when the bird is at the bottom of the screen, it may

need to flap its wings more frequently to avoid hitting

obstacles, while at the top of the screen, it may need to flap

less frequently.

The trajectory of the bird is influenced by the neural

network's ability to process inputs and generate outputs.

Specifically, the network takes in information about the bird's

position and speed, as well as the location of obstacles within

the game. It then uses this information to generate an output

that controls the bird's movement, such as whether it should

flap its wings or not.

The discriminatory mutations highlighted in Fig 4 can

impact the network's ability to process this information and

generate accurate outputs. For example, if a mutation alters the

connection between two parts of the network, it may cause the

network to misinterpret certain inputs or generate incorrect

outputs. This, in turn, can impact the bird's trajectory within

the game.

Overall, these figures demonstrate the importance of

understanding the underlying mechanisms that influence the

behavior of neural networks. By identifying specific mutations

that impact the network's ability to discriminate between

inputs, researchers can gain a better understanding of how the

network functions and develop strategies to optimize its

performance.

Additionally, the demo of the bird's trajectory highlights the

importance of considering context when analyzing neural

network behavior. The bird's movement is influenced by a

variety of factors, including its position within the game and

the location of obstacles. By taking these factors into account,

researchers can develop more nuanced understandings of how

neural networks function in complex, real-world environments.

Figure 5. Demo of the trajectory mutation

For the feedforward neural network we have setup the

various fitness criteria, threshold, node activation options like

mutation rate and other aggregation options and so on, The

parameters, setted here, are a fusion of the optimal game

mechanics and our demands, for a proper simulation, for

example the pop_size is the max generation rate of the birds,

so that the module does not harm the game environment. the

253

reset_on_extinction part is the part which suggests the game

should be restarted automatically once all Gens die, as shown

in Figure 5, the amount of Gens alive is 3. The other options

are necessary to configure the model, like the declaration of

the activation function, we have the following data:

[NEAT]

fitness_criterion = max

fitness_threshold = 100

pop_size = 50

reset_on_extinction = False

[DefaultGenome]

node activation options

activation_default = tanh

activation_mutate_rate = 0.0

activation_options = tanh

node aggregation options

aggregation_default = sum

aggregation_mutate_rate = 0.0

aggregation_options = sum

node bias options

bias_init_mean = 0.0

bias_init_stdev = 1.0

bias_max_value = 30.0

bias_min_value = -30.0

bias_mutate_power = 0.5

bias_mutate_rate = 0.7

bias_replace_rate = 0.1

5. DISCUSSION

NEAT, although being an outmoded NN method, provided

a 98% accurate and equivalent outcome when compared to

CV-AI. The output tables (Table 2 and Table 3) below

demonstrate the same.

Table 2. Neat performance

Input rate Baud_loss Time Complexity 𝑂(𝑛)
Correct trajectory

(𝑂(𝑇𝑎𝑛𝐻))

1.03333(TanH) -0.33% 4.333 sec 92.33%

1.09999(TanH) -0.333377% 3.864 sec 94.09%

Table 3. Generic CV model Performance

Input rate Baud_loss Time Complexity 𝑂(𝑛)
Correct trajectory

(𝑂(𝑇𝑎𝑛𝐻))

1.03333(TanH) 0.238% 2.23sec 89.02%

1.09999(TanH) 0.11199% 2.48 sec 88.74%

The figure displayed as Figure 6 represents a graphical

representation of the performance of NEAT and Generic

models. While CV-based models operate more quickly and

efficiently in real-time, NEAT-based models offer greater

accuracy and stability in the flow of operations. However, it is

also possible to train NEAT models in real-time and achieve

good performance, as long as the appropriate constraints are

put in place.

The processing and use functions of the model can also have

a significant impact on its performance and the level of

difficulty in managing the project. For example, the

mathematical activation function used in the model can

influence its performance. In computer vision applications, the

Tan H activation function can be replaced by Sigmoid to

improve performance.

There are several significant differences between NEAT-

based and CV-based Flappy Bird AI models, including

differences in complexity of development. NEAT-based

models rely on the evolution of neural networks to improve

their performance over time, while CV-based models typically

use pre-trained models and algorithms to recognize patterns

and make decisions.

A genuine note for the readers, we are not trying to

completely defenestrate the Generic-CV model, instead we

are trying to show our panglossian attitude towards the NEAT-

module. There are a lot of key factors that have an edge over

the traditional RL-based NEAT module. Baud_loss while

structuring is one, and many others have been mentioned

further. We have had common arguments on the time taken by

NEAT-module portray the data-based results, which is often

considered illogical by many experienced ML Engineers, but

it is grave to note, that the NGS- Framework (UNIX) is still

a main project operating on the NEAT- module. When it

comes to Pole-balancing, nothing can beat NEAT-module.

Automated Gas-Pipelines were a sharp architecture built with

the oldest of oldest versions of these algorithms. Yes, there are

methods like Gradient-Boosting, which have a handsome edge

over this algorithm, but NEAT is the obvious frontline on

minute-details based projects. The other most challenging part

is the slow convergence to optimal results, especially in highly

confusing environments, like space-tech, or even generic

astronomy, but the competence of this module with

(algorithms like A3C and DDPG) has proved its worth.

Furthermore, the modules that today are compared with NEAT,

are somewhat built with the methods that pre-existed in NEAT.

Like, generic_convergence and diverse_framworks. The CV

model has inherited the Caffe-byte conversion from the NEAT

Architecture.

The graphical representation of the performance of NEAT

and Generic models, shown in Figure 5, provides a visual

representation of how these two models compare in terms of

their performance. The figure shows how the two models

perform across different input rates on serial_baud, with the

two best results for each model highlighted.

Overall, this statement highlights the importance of

understanding the differences between different types of AI

models and the factors that can impact their performance. It

suggests that while NEAT models may require more complex

development and training, they can offer greater accuracy and

stability in certain applications. However, the choice of model

254

and processing functions should be carefully considered based

on the specific requirements and constraints of the project at

hand. Now, NEAT is a module that was introduced very early

in this rapidly over-expanding field of machine learning, and

is often considered as the initial-zone for simulative engines

and complex-mathematical procedures. It is grave to consider

other overall factors that are a crucial part of this evaluation of

NEAT’s legibility and true for real time scenarios in today’s

world. We’ll be now, taking a brief look at some other key

factors that stay in the defense of NEAT’s compatibility, and

some others that oppose the modus-operandi of this veteran

simulation module. It is very obvious that Generic-CV has

some beneficial improvements, and will definitely be able to

tackle some factors against NEAT. The factors that we’ll

consider in this part of the evaluation are: {Time Complexity

o(n), Time-to-Time coordination with the bird (w), and

Generic Tracing (R)}. The main difference where the

efficiency factor comes into play is the use of .pickle file

extension which is very crucial while operating on NEAT. The

basic purpose for this, is to serialize Python Object Structures

which refers to the process of converting an object into a byte

stream, thus each and every trajectory has to be converted into

a stream and transferred to the memory. The CV model has got

an advantage, as it operates on real-time graphic-byte-streams.

We have discussed the Time Complexity (0(n)) before, and

the Computer Vision model has got a clear advantage there.

Hereafter, if we check on the Generic Tracing (R) , We can

conclude that NEAT-module has to rest down the debate,

because there is no model better than CV or OpenCV at

capturing real time streams of images (whether in presence of

Cudart64_dll or not). The CV model has got a knack of

tracing the object to the best of it’s potential. These factors

create a fast-paced environment for the CV-model which is

Agathokakological for it, because it can increase it’s efficiency,

but compromise the accuracy a bit. Sometimes, the CV model

has an edge, where the NEAT-module is not able to compute

in a certain heap, or benchmark.

Figure 6. Performance of NEAT model and Generic CV

model

The way the AI analyses the game data is one notable

difference. A neural network used by an NEAT-based AI to

interpret game data receives input from the game and

generates output actions based on this input. Contrarily, a CV-

based AI processes game data using computer vision methods,

which entails examining the game screen and extracting

pertinent data from it. The manner the AI is trained is another

distinction. By building a population of neural networks with

various topologies and using an assessment function to choose

the best-performing networks to breed and produce the

following generation, an evolutionary algorithm is used to

train an NEAT-based AI. Contrarily, supervised learning is

often used to train CV-based AI. This method entails giving

the AI labelled training data and using an optimization

algorithm to modify the network weights and biases in order

to reduce the error between the expected and actual outputs.

The degree of interpretability of the AI's decision-making

process is a third distinction. As an NEAT-based AI is trained

via an evolutionary algorithm that modifies the connections

and weights inside the network rather than providing explicit

rules or guidelines for decision-making, it is often less

interpretable than a CV-based AI. Contrarily, because CV-

based AI is trained via supervised learning and can be made to

extract particular traits or patterns from the game screen that

are important to the decision-making process, it is frequently

easier to interpret.

In summation, the processing of game data, training

methods, and interpretability of decision-making processes

differ between NEAT-based and CV-based Flappy Bird AIs.

The project's particular objectives and limits will determine

the optimal method.

6. CONCLUSION

The conclusion of the research states that we were able to

examine the model's operation in this study, including the

neural network's mathematical processing and visual

computation. We also learned how to build an AI engine using

the NEAT algorithm and observed how to improve its

statistical performance in situations like Flappy Bird.

We also note that despite having a relatively small

population, NEAT was able to master Flappy Bird in just 8

generations, demonstrating its excellent method and high level

of effectiveness. The simplicity of the solutions generated by

NEAT makes it incredibly effective, and future games can

adopt this method to discover the ideal solution in a relatively

small number of generations.

Additionally, we were able to predict the time and expected

number of generations required for the program to learn the

same thing due to the rigorous learning process. This

information can be used to optimize the training process for

future AI agents for Flappy Bird and other games.

Overall, the conclusion emphasizes the effectiveness and

potential of the NEAT algorithm for training AI agents for

games like Flappy Bird. The study suggests that NEAT

(NeuroEvolution of Augmenting Topologies) can achieve

impressive results with a relatively small population,

indicating that it could be a useful tool for solving other

complex problems in the future.

This study also implies that NEAT has been tested on a

complex problem and has achieved impressive results,

indicating that it could be applied to other complex problems

in the future. The findings of the study may encourage

researchers to explore the potential of NEAT for solving other

complex problems.

In conclusion, this research suggests that NEAT can achieve

impressive results with a relatively small population and has

potential for solving other complex problems in the future. The

future scopes for NEAT include robotics, artificial intelligence

for gaming, natural language processing, and healthcare. By

further exploring the potential of NEAT, researchers may be

able to develop new and innovative solutions to complex

255

problems in various fields.

REFERENCES

[1] Stanley, K.O., Miikkulainen, R. (2002). Evolving neural

networks through augmenting topologies. Evolutionary

Computation, 10(2), 99-127.

https://doi.org/10.1162/106365602320169811

[2] Heier, C. (2015). Free to play: mobile gaming and the

precipitous rise of freemium. The Review: A Journal of

Undergraduate Student Research, 16(1), 5-11.

[3] Appiah, N., Vare, S. (2018). Playing flappybird with

deep reinforcement learning. Junthbasnet, pp. 1-6.

[4] Gu, C., Chen, J., Lin, J., Lin, S., Wu, W., Jiang, Q., Yang,

C., Wei, W. (2022). The impact of eye-tracking games as

a training case on students' learning interest and

continuous learning intention in game design courses:

Taking Flappy Bird as an example. Learning and

Motivation, 78: 101808.

https://doi.org/10.1016/j.lmot.2022.101808

[5] Cordeiro, M.G., Serafim, P.B.S., Nogueira, Y.L.B.,

Vidal, C.A., Neto, J.B.C. (2019). A minimal training

strategy to play flappy bird indefinitely with NEAT. In

2019 18th Brazilian Symposium on Computer Games

and Digital Entertainment (SBGames), Janeiro, Brazil,

pp. 21-28.

https://doi.org/10.1109/SBGames.2019.00014

[6] Pilcer, L.S., Hoorelbeke, A., Andigne, A.D. (2015).

Playing flappy bird with deep reinforcement learning [C].

IEEE Transactions on Neural Networks, 16(1): 285-286.

http://dx.doi.org/10.13140/RG.2.2.13159.96165

[7] Deepkumar, N., Vasudevan, V. (2022). Neuro-Evolution

in Flappy Bird Game. In 2022 IEEE 2nd Mysore Sub

Section International Conference (MysuruCon), Mysuru,

India, pp. 1-5.

https://doi.org/10.1109/MysuruCon55714.2022.997263

7

[8] Nayak, D., Butt, M.A., Zaman, M., Themazi, D.A.

(2013). Empowering cloud security through sla. Journal

of Global Research in Computer Science, 4(1): 30-33.

[9] Mishra, Y., Kumawat, V., Selvakumar, K. (2019).

Performance analysis of flappy bird playing agent using

neural network and genetic algorithm. In Information,

Communication and Computing Technology: 4th

International Conference, ICICCT 2019, New Delhi,

India, pp. 253-265. http://dx.doi.org/10.1007/978-981-

15-1384-8_21

[10] Piper, M., Bhounsule, P., Castillo-Villar, K.K. (2017,

October). How to beat Flappy Bird: A mixed-integer

model predictive control approach. In Dynamic Systems

and Control Conference, vol. 58288: V002T07A003.

https://doi.org/10.1115/DSCC2017-5285

[11] Gu, J., Guo, Y., Lam, Y., Pu, Z.B. (2023). Flappy bird

game based on the deep Q learning neural network.

Highlights in Science, Engineering and Technology, 34,

191-195. http://dx.doi.org/10.54097/hset.v34i.5448

[12] Selvan, J. P., Game, P.S. (2022). Playing a 2D game

indefinitely using NEAT and reinforcement learning.

arXiv preprint arXiv:2207.14140.

https://doi.org/10.48550/arXiv.2207.14140

[13] Kaul, S., Fayaz, S.A., Zaman, M., Butt, M.A. (2022). Is

decision tree obsolete in its original form? A burning

debate. Revue d'Intelligence Artificielle, 36(1), 105-113.

https://doi.org/10.18280/ria.360112

[14] Rehman, A., Butt, M.A., Zaman, M. (2021, April). A

survey of medical image analysis using deep learning

approaches. In 2021 5th International Conference on

Computing Methodologies and Communication

(ICCMC), Erode, India, pp. 1334-1342.

https://doi.org/10.1109/ICCMC51019.2021.9418385

[15] Amir, S., Zaman, M., Ahmed, M. (2022). Numerical and

experimental investigation of meteorological data using

adaptive linear M5 model tree for the prediction of

rainfall. Review of Computer Engineering Research.

http://dx.doi.org/10.18488/76.v9i1.2961

[16] Fayaz, S.A., Zaman, M., Butt, M.A. (2021). An

application of logistic model tree (LMT) algorithm to

ameliorate prediction accuracy of meteorological data.

International Journal of Advanced Technology and

Engineering Exploration, 8(84), 1424.

http://dx.doi.org/10.19101/IJATEE.2021.874586

[17] Altaf, I., Butt, M.A., Zaman, M. (2021, September). A

pragmatic comparison of supervised machine learning

classifiers for disease diagnosis. In 2021 Third

International Conference on Inventive Research in

Computing Applications (ICIRCA), Coimbatore, India,

pp. 1515-1520.

https://doi.org/10.1109/ICIRCA51532.2021.9544582

[18] Mir, N.M., Khan, S., Butt, M.A., Zaman, M. (2016). An

experimental evaluation of bayesian classifiers applied to

intrusion detection. Indian Journal of Science and

Technology, 9(12), 1-7.

http://dx.doi.org/10.17485/ijst/2016/v9i12/86291

[19] Ashraf, M., Zaman, M., Ahmed, M. (2018, January).

Performance analysis and different subject combinations:

an empirical and analytical discourse of educational data

mining. In 2018 8th International Conference on Cloud

Computing, Data Science & Engineering (Confluence),

Noida, India, pp. 287-292.

https://doi.org/10.1109/CONFLUENCE.2018.8442633

[20] Vu, T., Tran, L. (2020). FlapAI bird: training an agent to

play flappy bird using reinforcement learning techniques.

arXiv preprint arXiv:2003.09579.

https://doi.org/10.48550/arXiv.2003.09579

[21] Ebeling-Rump, M., Kao, M., Hervieux-Moore, Z. (2016).

Applying q-learning to flappy bird. Department of

Mathematics And Statistics, Queen’s University.

http://kilyos.ee.bilkent.edu.tr/~eee546/FlappyQ.pdf,

accessed on Jan. 5, 2023.

[22] Brandão, A., Pires, P., Georgieva, P. (2019, September).

Reinforcement learning and neuroevolution in flappy

bird game. In Pattern Recognition and Image Analysis:

9th Iberian Conference, IbPRIA 2019, Madrid, Spain, pp.

225-236. https://doi.org/10.1007/978-3-030-31332-6_20

[23] Fayaz, S. A., Kaul, S., Zaman, M., Butt, M.A. (2022). An

adaptive gradient boosting model for the prediction of

rainfall using ID3 as a base estimator. Revue

d'Intelligence Artificielle, 36(2), 241-250.

http://dx.doi.org/10.18280/ria.360208

[24] Zaman, M., Butt, M.A. (2012, October). Information

translation: a practitioners approach. In World congress

on engineering and computer science (WCECS). USA:

San Francisco.

256

https://doi.org/10.48550/arXiv.2207.14140

