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Determining real-time machine simulation and functionalities of complex AI Engines is 

difficult to comprehend and is rarely discussed. We present a technique to analyze the 

workflow of one such engine, the NEAT engine, one of the fundamental and robust training 

engines in the current machine learning scenario. Computer Vision also presents a great 

approach towards working in real-time speedy functioning virtual simulators and visual 

platforms, whereas NEAT is not specialized in the same, but can perform to the best of the 

extent in the present day Machine Learning aspect. Technologies like Python, PyGame, and 

CsV were used to facilitate the research. So far, we have tested both the frameworks on real 

time cases, and it is safe to say that the NEAT module has presented an accurate trajectory, 

besides greater time complexity. Thus, we not only evaluate the accuracy but the other key 

factors as well. This study demonstrates that NEAT has the ability to address other difficult 

issues in the future and can produce excellent outcomes with a relatively small population. 

Robotics, artificial intelligence for video games, natural language processing, and 

healthcare are some of the potential future applications for NEAT.   
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1. INTRODUCTION

Flappy Bird is a popular mobile game that was released in 

2013. The objective of the game is to guide a bird through a 

series of pipes without touching them. The bird can be 

controlled by tapping the screen, causing it to flap its wings 

and gain altitude. 

One approach to designing an AI agent that can play Flappy 

Bird is to use the NEAT (NeuroEvolution of Augmenting 

Topologies) algorithm. NEAT is an evolutionary algorithm 

that evolves neural networks with complex topologies by 

adding and removing nodes and connections. 

To apply NEAT to Flappy Bird, we can represent the game 

state as inputs to a neural network. These inputs could include 

the bird's height, the distance to the nearest pipe, and the height 

of the opening in the pipe. The neural network would then 

output a single value indicating whether the bird should flap 

or not. 

During each generation, a population of neural networks is 

created and evaluated by playing Flappy Bird. The networks 

that perform the best are selected to reproduce and create a 

new generation of networks. Through this process of selection, 

reproduction, and mutation, the neural networks evolve over 

time to become better at playing Flappy Bird. 

The NEAT algorithm has been successfully applied to 

Flappy Bird, resulting in AI agents that can achieve high 

scores and outperform human players. This demonstrates the 

power of evolutionary algorithms and their ability to solve 

complex problems. 

The machine learning approach known as NEAT 

(Neuroevolution of Augmenting Topologies), developed by 

Kenneth O. Stanley, involves training a neural network using 

evolutionary techniques [1]. Using an evolutionary algorithm, 

the best-performing networks are chosen from a population of 

neural networks with varied topologies (i.e., different numbers 

and configurations of neurons and connections) to breed and 

generate the following generation of networks.  

In the well-known smartphone game Flappy Bird, the user 

must lead a bird between the spaces between ordinarily placed 

pipes. It's a popular game that was first developed for mobile 

platforms [2]. Its only goal is to maintain the player or bird's 

life, extending as far as possible by avoiding contact with the 

other pair while navigating a space between two pairs. Figure 

1 below depicts the various game phases. 

The game's gameplay is extremely straightforward: at every 

moment, the player has a choice between two options: 

touching the screen to cause the bird to fly higher or doing 

nothing to cause it to drop [3]. By modifying the connections 

and weights inside the network through evolution, NEAT 

might be used to train a neural network to play the Flappy Bird 

game. 

The network would receive information from the game 

(such as the position of the bird, how far away the next barrier 

is, etc.), and it would output bird actions (such as jumping or 

not jumping). The evolutionary algorithm would rate how well 

the network performed in the game and use that score to pick 

the top-performing networks to breed and produce the 

subsequent generation. With the intention of eventually 

creating a neural network that can play the Flappy Bird game 

at a high level, this procedure would be repeated over multiple 

generations [4]. The major contribution of this study is to 

understanding the concepts of Entity Size, Generative Index, 
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Reaction Time, and activation functions. To develop an 

understanding of essential artificial intelligence basic 

principles and the right neural network process. 

Figure 1. General phases of the Flappy Bird game 

2. LITERATURE SURVEY

Numerous researchers used a variety of methodologies,

including neural networks (Tensor flow), reinforcement 

learning, neuro-evolutionary methods, and others to contribute 

to Flappy Bird. This paper describes a few of the brief 

investigations by several researchers.  

In order to create autonomous virtual players utilizing the 

NEAT neuro-evolutionary method to generate an agent that 

can play the Flappy Bird game, this research [5] suggests a 

minimal training technique. The simplest neural network 

architecture capable of playing the game flawlessly was 

discovered using NEAT. In order to achieve proper 

representation of the issue in comparison to the actual game, 

the fitness function and scenario modelling were set. A 

weighted average based on several circumstances and 

scenario-specific components makes up the fitness function. 

The method has a short convergence time, a low complexity 

network, and ideal game behaviour by combining the minimal 

training approach, a representative fitness, and NEAT. The 

authors of this study [6] apply a Reinforcement Learning 

model to the smartphone game Flappy Bird that develops 

control strategies based on visual observations and feedback 

from when the bird hurts an object. The authors use a general 

approach that trains the agent to make the proper choice at any 

time during the game based on the raw pixel values of the 

game frames. In this study, authors use a kind of Q-Learning 

to train a Flappy Bird agent to fly and navigate obstacles while 

they also look at the effects of image preprocessing and other 

strategies to shorten training time and increase the rewards the 

agent receives.   

This paper [7, 8] illustrates how to generate AI using GA 

and DNN to build an AI that can win the Flappy Bird game. 

The neural network is a simple dense neural network with one 

layer of concealing. The application of GA, especially the 

mutation of the weight vector, shows its importance for 

attaining the goals of the AI. In this paper, each bird starts out 

with an established network. The genetic algorithm, which 

also oversees the process of mutation, regulates the generation 

of the subsequent population. After a predetermined number 

of repetitions, the network finally develops the mutational 

strategies necessary to win the game. 

This paper [9] presents the development and evaluation of 

an artificial intelligence game-playing agent using genetic 

algorithms and neural networks. The agent is designed to learn 

optimal gameplay strategies for the popular "Flappy Bird" 

game by safely avoiding obstacles and progressing through the 

levels. The study investigates the impact of varying parameters 

such as the number of neurons on the hidden layer, gravity, 

speed, and gap between obstacles on the learning process. The 

gameplay is divided into two difficulty levels to enable a 

detailed analysis of the learning process. The Phaser 

Framework is utilized for HTML5 programming to introduce 

real-life factors such as gravity and collision. The Synaptic 

Neural Network library is adopted to implement neural 

networks and avoid the need to create a neural network from 

scratch. The machine learning algorithm employed in the 

study is based on the concept of Neuro-Evolution, which uses 

algorithms like genetic algorithms to train artificial neural 

networks. Overall, the study provides insights into the 

potential of using genetic algorithms and neural networks to 

develop effective game-playing agents.  

This paper [10] examines autonomous controllers for the 

mobile game Flappy Bird. Three controllers were created and 

tested: a manually-tuned controller, an optimization-based 

controller, and a model-based predictive controller (MPC). 

The optimization-based controller scored the highest, 

followed closely by the MPC, while the manually-tuned 

controller scored the least. The choice of planning horizon was 

critical for achieving high scores. The MPC provided the best 

compromise between performance and computation speed 

without requiring elaborate tuning. 

This study [11] proposes the use of deep Q-learning to train 

a model to pass obstacles in the game "Flappy bird". An Image 

Translation Process and Deep Q-Learning Algorithm were 

developed to improve model performance. The game 

background was removed to speed up convergence. After 50 

thousand experiments and data recording, the model was able 

to pass through the third pipe. A total of 2 million attempts 

were made, which took about 30 hours of experimentation. 

The study suggests that the proposed model could be adapted 

for other reinforcement learning tasks in the future. 

Authors in this paper [12] proposed using artificial 

environments and games to test pathfinding and search space 

optimization algorithms. They chose "Flappy Bird" as an 

environment and implemented two algorithms: 

NeuroEvolution of Augmenting Topologies (NEAT) and 

Reinforcement Learning (RL). NEAT algorithm showed 

improved performance with larger initial populations. RL 

algorithm used a Deep Q-learning Network and remembered 

the state, action, and reward. The goal was to compare the 

performance of the algorithms based on how quickly the agent 

could differentiate between rewarding and hostile actions. The 

study demonstrates the usefulness of game environments for 

testing AI algorithms. 

Overall, these papers demonstrate that the NEAT algorithm 

is an effective approach for training AI agents for Flappy Bird. 

It can produce agents that achieve high scores and outperform 

human players. However, there is ongoing research to improve 

the performance of evolutionary algorithms for this game and 

explore their potential in other games and applications.  

Since accuracy was not taken into account in any one of 

these experiments, this conclusion can be drawn. This 

encourages us to use the NEAT algorithm to focus on the 

accuracy parameter without first examining how accuracy 

would affect other parameters like time complexity and other 

factors. 
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3. METHODOLOGY

The methodology of Flappy Bird is relatively simple 

(Figure 2). The player controls a bird, which is constantly 

moving forward, by tapping the screen or pressing a button to 

make the bird flap its wings and fly upwards. The objective of 

the game is to navigate the bird through a series of pipes 

without hitting them. Each time the bird successfully passes 

through a pipe, the player earns a point. The game ends when 

the bird collides with a pipe or the ground. Being Precise, we 

have used a particular configuration locker file, trained 

weights and configured the NEAT-Algorithm to our needs. 

This is very simple as all other developers do, but the main 

structure and framework, aim rather is to prove the NEAT may 

look like an ancestor to new robust models, but it’s not 

obsolete [13-16]. 

Figure 2. General flowchart of the implemented 

methodology 

The game mechanics of Flappy Bird are designed to be 

challenging and addictive, with the player needing to have 

quick reflexes and good timing to navigate the bird through the 

gaps in the pipes. The game has simple graphics and sound 

effects, but the difficulty level and the addictive gameplay 

make it a popular choice among casual gamers. 

The methodology of Flappy Bird can be summarized as 

follows: 

Simple game mechanics: The player controls a bird by 

tapping the screen to make it fly, with the objective of avoiding 

pipes and earning points. 

Challenging gameplay: The game is designed to be difficult, 

with the player needing to have quick reflexes and good timing 

to succeed. 

Addictive qualities: The game is designed to be addictive, 

with players wanting to keep playing to improve their score 

and beat their high score. 

Simple graphics and sound effects: The game has basic 

graphics and sound effects, but they are effective in creating 

an immersive gaming experience. 

Without explicitly constructing the network architecture or 

manually adjusting the connections and weights, NEAT 

enables the training of neural networks to play games. Instead, 

the evolutionary algorithm takes care of these tasks 

automatically, letting the network experiment with the game 

and learn how to play it. Following are the steps we take to 

initialize and set up the environment. 

3.1 Initialization 

The popular Flappy Bird game was developed; it contained 

a few obstacles that the user's taps were supposed to help the 

flying bird navigate through. By teaching an AI Engine to 

perform a classical masterwork, we give a thorough analytical 

analysis of AI process. In this instance, we have an initial 

entity to comprehend the methodology and procedure. Let's 

say that thing is a Bird_Y (Figure 3) in an Environment (Ĵ). 

Figure 3. Flappy Bird representation 

We used the classical method of giving coordinates to a 

particular engine X, in this case cored upon NEAT. Keep in 

mind that these heights are not always constant. In order for 

the engine to relate to each coordinate of the impediments, we 

train it to reproduce itself with every data coordinate.  

The engine employs the function of 𝑇𝑎𝑛 𝐻, where 𝐻 is the 

obstruction's height, and uses it as the activation function. It 

then calculates the generative index (k) (obstruction 

generation rate), utilizing both size estimation and 

randomizing the function of  𝑇𝑎𝑛 𝐻 . The formula can be 

represented as follows (1):  

𝛥 𝑘 =  𝑇𝑎𝑛 𝐻 . 𝑆 [𝐻 +  𝜔(𝑆)] (1) 

where 𝑘  is the generative index, 𝑇𝑎𝑛 𝐻  is the function of 

height and 𝑆 is the size estimation on past records. ω is the 

omega of 𝑆 i.e. factorial value of the size and height. This was 

the case of height estimation. Now, to detect the obstruction, 

the engine uses Bird_Y by sending the above activation 

function to every coordinate and detecting the perfect 𝑇𝑎𝑛 𝐻 

value. In this way, the engine is able to detect the obstruction. 

Below table (Table 1), shows the ratio of the activation 

functions with different bird generations. In the classical 

Flappy Bird game, we have seen that there is no particular end 

to the game, even anyone may get old playing that [17-19]. To 

revise here, Flappy Bird was a classical icon, known for it’s 2-
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D physics and very-minute mechanical_features. The game is 

very constant as you progress to the never-ending end. During 

research, we observed that the speed_mechanics remain very 

common in every progressing stage, but the pole-height 

dynamics keep on changing, which are very much defined in 

the algorithms.

Table 1. Ratio Functions with different bird generations 

Gen_ID 
Rate 

Index 

Ratio to Activation 

Function 
Pole_Height_Reaction 

Bird_Height(+ve for above pole) (-ve for below 

pole) 

Bird_Y: 

1 
1 1:1 9.0(0.80s) +3.0, -2.3

Bird_Y: 

2 
3 1:3 9.3(0.60s) +2.2, -0.1

Bird_Y: 

3 
5 1:5 9.88(0.46s) +1.9, -2.2

Now, we can see the proof of this being a reinforcement 

learning method, the results get better with each new 

generation, but it is crucial to note that the Bird Y:2 has the 

most challenging environment, which show the gameplay 

remains balanced at the start and end, with a flux in- the middle, 

the part where most of the players get eliminated. The flux, too, 

in pole heights, which creates a very short space for the bird to 

fly, evident from the last column of the Table 1 above [20]. 

3.2 Environmental setup: Flappy Bird 

The steps that must be taken in order to set up the 

environment are as follows: 

1. Create a development environment: We set up Python

and the tools required, such as Pygame and Pyglet, to create 

the Flappy Bird game and execute the NEAT algorithm.  

2. Build the Flappy Bird game: We build up the user

input management, visuals, and game logic for the Flappy Bird 

game. A game creation library like Pygame or Pyglet was used 

for this. 

3. Define the neural network's inputs and outputs: The

input and output parameters for the neural network that 

manages the Flappy Bird game must be chosen. The position 

of the bird, the distance between obstacles, and other 

information are inputs. The output was a binary value that 

indicated whether or not the bird should jump. 

4. Implement the NEAT algorithm: The NEAT

algorithm, which entails generating a population of neural 

networks with various topologies, assessing their 

performance, choosing the best-performing networks to breed 

and generate the following generation, and repeating this 

process over a number of generations, implemented in Python. 

5. Train the neural network: After implementing the

NEAT method, we must train the neural network by playing 

the Flappy Bird game and modifying the connections and 

weights within the network using the NEAT algorithm. This 

can be accomplished by repeatedly running the game, feeding 

the neural network data from the game, and then assessing and 

enhancing the network's performance using the NEAT 

algorithm. 

Once the neural network has been trained, we can test its 

effectiveness by running the Flappy Bird game and observing 

how well it functions. To enhance the performance of the 

network, we might have to tweak the NEAT settings or other 

factors. 

3.3 Neural network: Flappy Bird 

These general procedures must be followed in order to 

create a neural network for NEAT-Flappy Bird: 

1. Define the network's inputs and outputs: The input

and output parameters for the neural network that will operate 

the Flappy Bird game needed to be chosen. The position of the 

bird, the separation between obstacles, and other information 

are inputs. 

2. Create a population of neural networks: Using the

specified inputs and outputs as the network's input and output 

layers, we had to build a population of neural networks with 

various topologies. The number of hidden layers and the 

number of neurons in each layer could be included in the 

network structure. 

3. Initialize the weights and biases of the networks:

Because these values are altered throughout training, we had 

to initialize the weights and biases of the networks randomly. 

4. Training the neural networks: To train the neural

networks, we had to play the Flappy Bird game while 

modifying the connections and weights in the network using 

the NEAT algorithm. This can be accomplished by repeatedly 

running the game, feeding the neural network data from the 

game, and then assessing and enhancing the network's 

performance using the NEAT algorithm. 

The NEAT method was used to pick the top-performing 

networks after the neural networks had been trained in order 

to breed and create the following generation of networks. 

Using the NEAT method, we must repeatedly train the neural 

networks across a number of generations in order to assess and 

enhance their performance. Since, this is a Reinforcement-

Learning based method, repetitive analysis and 

feedforward_configurations are to be made. Furthermore, we 

did not extend the cycle of 3-repetitive conjunctions in the 

network_modification process. Yes, it is a hectic process 

during the initial initialization process, and weight collection, 

but an expert would know that no generic-process under the 

umbrella of Reinforcement-Learning is straight-forward and 

uni-processed [21]. Also, it is essentially a problematic 

situation when you deal with both NEAT, and NN hand-in-

hand, as there are certain weight-cycles to go through in the 

process. Furthermore, the newer process of gradient-boosting 

has a reduced number of cycles to go through. Hereafter, 

NEAT and NN would have got a very less number of retries, 

if the quality of data was greater. Further, CV has got a 

complete lead here due to its procession on a certain 

caffe_model, which helps it to go from the second or even 

very_first try of the program [22-24]. 

4. EXPERIMENTAL ANALYSIS AND RESULTS

The purpose of the analytical experiment was to 

demonstrate the continued relevance and effectiveness of the 
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NEAT algorithm in its original and robust form. The NEAT 

algorithm, which stands for NeuroEvolution of Augmenting 

Topologies, is a machine learning technique that is used to 

evolve artificial neural networks. The goal of this experiment 

was to show that NEAT is still a viable option for real-time 

applications, and to compare its performance to that of a 

Generic CV model. 

To carry out the experiment, we tested both the NEAT and 

Generic CV models around 15 times with different input rates 

on serial_baud. Then we compared the results and included the 

two best results in both cases. The NEAT algorithm was found 

to work repeatedly on evolution, which increases the time 

complexity compared to the Generic CV model. 

One of the key findings of the experiment was that NEAT 

is still effective in real-time applications, despite the 

increasing availability of modern styled visual forms of 

services in the industry. The results showed that the NEAT 

algorithm was able to adapt and evolve to different input rates, 

and that its performance was comparable to that of the Generic 

CV model. 

However, we did note that the NEAT algorithm has a higher 

time complexity compared to the Generic CV model. This 

means that the NEAT algorithm may take longer to process 

data and produce results, which could be a potential drawback 

in certain applications. 

Overall, the experiment demonstrated the continued 

effectiveness of the NEAT algorithm in its original and robust 

form, and showed that it is still a viable option for real-time 

applications. We suggested that future studies could focus on 

optimizing the time complexity of the NEAT algorithm, and 

on exploring its potential applications in other fields. The 

results of this experiment could be useful for developers and 

researchers who are interested in using machine learning 

techniques for real-time applications. 

Figure 4. Mutations in network 

The figure displayed as Figure 4 represents the mutations 

that are associated with discrimination in the proper schematic 

neural network. The schematic neural network is a visual 

representation of a computational neural network, showing 

how different parts of the network are connected to each other. 

In this case, the figure shows how specific mutations within 

the neural network can impact its ability to discriminate 

between different inputs. These discriminatory mutations are 

highlighted in the figure, showing how they alter the 

connections within the network. 

To better understand the impact of these mutations on the 

behavior of the network, a demo of the trajectory of a flappy 

bird is shown in Figure 5. This demo shows how the bird's 

trajectory can vary based on its position within the game. For 

example, when the bird is at the bottom of the screen, it may 

need to flap its wings more frequently to avoid hitting 

obstacles, while at the top of the screen, it may need to flap 

less frequently. 

The trajectory of the bird is influenced by the neural 

network's ability to process inputs and generate outputs. 

Specifically, the network takes in information about the bird's 

position and speed, as well as the location of obstacles within 

the game. It then uses this information to generate an output 

that controls the bird's movement, such as whether it should 

flap its wings or not. 

The discriminatory mutations highlighted in Fig 4 can 

impact the network's ability to process this information and 

generate accurate outputs. For example, if a mutation alters the 

connection between two parts of the network, it may cause the 

network to misinterpret certain inputs or generate incorrect 

outputs. This, in turn, can impact the bird's trajectory within 

the game. 

Overall, these figures demonstrate the importance of 

understanding the underlying mechanisms that influence the 

behavior of neural networks. By identifying specific mutations 

that impact the network's ability to discriminate between 

inputs, researchers can gain a better understanding of how the 

network functions and develop strategies to optimize its 

performance. 

Additionally, the demo of the bird's trajectory highlights the 

importance of considering context when analyzing neural 

network behavior. The bird's movement is influenced by a 

variety of factors, including its position within the game and 

the location of obstacles. By taking these factors into account, 

researchers can develop more nuanced understandings of how 

neural networks function in complex, real-world environments. 

Figure 5. Demo of the trajectory mutation 

For the feedforward neural network we have setup the 

various fitness criteria, threshold, node activation options like 

mutation rate and other aggregation options and so on, The 

parameters, setted here, are a fusion of the optimal game 

mechanics and our demands, for a proper simulation, for 

example the pop_size is the max generation rate of the birds, 

so that the module does not harm the game environment. the 
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reset_on_extinction part is the part which suggests the game 

should be restarted automatically once all Gens die, as shown 

in Figure 5, the amount of Gens alive is 3. The other options 

are necessary to configure the model, like the declaration of 

the activation function, we have the following data: 

[NEAT] 

fitness_criterion     = max 

fitness_threshold     = 100 

pop_size              = 50 

reset_on_extinction   = False 

[DefaultGenome] 

# node activation options 

activation_default      = tanh 

activation_mutate_rate  = 0.0 

activation_options      = tanh 

# node aggregation options 

aggregation_default     = sum 

aggregation_mutate_rate = 0.0 

aggregation_options     = sum 

# node bias options 

bias_init_mean      = 0.0 

bias_init_stdev      = 1.0 

bias_max_value      = 30.0 

bias_min_value      = -30.0 

bias_mutate_power   = 0.5 

bias_mutate_rate      = 0.7 

bias_replace_rate      = 0.1 

5. DISCUSSION

NEAT, although being an outmoded NN method, provided 

a 98% accurate and equivalent outcome when compared to 

CV-AI. The output tables (Table 2 and Table 3) below

demonstrate the same.

Table 2. Neat performance 

Input rate Baud_loss Time Complexity 𝑂(𝑛) 
Correct trajectory 

(𝑂(𝑇𝑎𝑛𝐻)) 

1.03333(TanH) -0.33% 4.333 sec 92.33% 

1.09999(TanH) -0.333377% 3.864 sec 94.09% 

Table 3. Generic CV model Performance 

Input rate Baud_loss Time Complexity 𝑂(𝑛) 
Correct trajectory 

(𝑂(𝑇𝑎𝑛𝐻)) 

1.03333(TanH) 0.238% 2.23sec 89.02% 

1.09999(TanH) 0.11199% 2.48 sec 88.74% 

The figure displayed as Figure 6 represents a graphical 

representation of the performance of NEAT and Generic 

models. While CV-based models operate more quickly and 

efficiently in real-time, NEAT-based models offer greater 

accuracy and stability in the flow of operations. However, it is 

also possible to train NEAT models in real-time and achieve 

good performance, as long as the appropriate constraints are 

put in place. 

The processing and use functions of the model can also have 

a significant impact on its performance and the level of 

difficulty in managing the project. For example, the 

mathematical activation function used in the model can 

influence its performance. In computer vision applications, the 

Tan H activation function can be replaced by Sigmoid to 

improve performance. 

There are several significant differences between NEAT-

based and CV-based Flappy Bird AI models, including 

differences in complexity of development. NEAT-based 

models rely on the evolution of neural networks to improve 

their performance over time, while CV-based models typically 

use pre-trained models and algorithms to recognize patterns 

and make decisions. 

A genuine note for the readers, we are not trying to 

completely defenestrate the Generic-CV model, instead we 

are trying to show our panglossian attitude towards the NEAT-

module.  There are a lot of key factors that have an edge over 

the traditional RL-based NEAT module. Baud_loss while 

structuring is one, and many others have been mentioned 

further. We have had common arguments on the time taken by 

NEAT-module portray the data-based results, which is often 

considered illogical by many experienced ML Engineers, but 

it is grave to note, that the NGS- Framework (UNIX) is still 

a main project operating on the NEAT- module. When it 

comes to Pole-balancing, nothing can beat NEAT-module. 

Automated Gas-Pipelines were a sharp architecture built with 

the oldest of oldest versions of these algorithms. Yes, there are 

methods like Gradient-Boosting, which have a handsome edge 

over this algorithm, but NEAT is the obvious frontline on 

minute-details based projects. The other most challenging part 

is the slow convergence to optimal results, especially in highly 

confusing environments, like space-tech, or even generic 

astronomy, but the competence of this module with 

(algorithms like A3C and DDPG) has proved its worth. 

Furthermore, the modules that today are compared with NEAT, 

are somewhat built with the methods that pre-existed in NEAT. 

Like, generic_convergence and diverse_framworks. The CV 

model has inherited the Caffe-byte conversion from the NEAT 

Architecture.  

The graphical representation of the performance of NEAT 

and Generic models, shown in Figure 5, provides a visual 

representation of how these two models compare in terms of 

their performance. The figure shows how the two models 

perform across different input rates on serial_baud, with the 

two best results for each model highlighted. 

Overall, this statement highlights the importance of 

understanding the differences between different types of AI 

models and the factors that can impact their performance. It 

suggests that while NEAT models may require more complex 

development and training, they can offer greater accuracy and 

stability in certain applications. However, the choice of model 
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and processing functions should be carefully considered based 

on the specific requirements and constraints of the project at 

hand. Now, NEAT is a module that was introduced very early 

in this rapidly over-expanding field of machine learning, and 

is often considered as the initial-zone for simulative engines 

and complex-mathematical procedures. It is grave to consider 

other overall factors that are a crucial part of this evaluation of 

NEAT’s legibility and true for real time scenarios in today’s 

world. We’ll be now, taking a brief look at some other key 

factors that stay in the defense of NEAT’s compatibility, and 

some others that oppose the modus-operandi of this veteran 

simulation module. It is very obvious that Generic-CV has 

some beneficial improvements, and will definitely be able to 

tackle some factors against NEAT. The factors that we’ll 

consider in this part of the evaluation are: {Time Complexity 

o(n), Time-to-Time coordination with the  bird (w), and 

Generic Tracing (R)}.  The main difference where the 

efficiency factor comes into play is the use of .pickle file 

extension which is very crucial while operating on NEAT. The 

basic purpose for this, is to serialize Python Object Structures 

which refers to the process of converting an object into a byte 

stream, thus each and every trajectory has to be converted into 

a stream and transferred to the memory. The CV model has got 

an advantage, as it operates on real-time graphic-byte-streams. 

We have discussed the Time Complexity (0(n)) before, and 

the Computer Vision model has got a clear advantage there. 

Hereafter, if we check on the Generic Tracing (R) , We can 

conclude that NEAT-module has to rest down the debate, 

because there is no model better than CV or OpenCV at 

capturing real time streams of images (whether in presence of 

Cudart64_dll or not).  The CV model has got a knack of 

tracing the object to the best of it’s potential. These factors 

create a fast-paced environment for the CV-model which is 

Agathokakological for it, because it can increase it’s efficiency, 

but compromise the accuracy a bit. Sometimes, the CV model 

has an edge, where the NEAT-module is not able to compute 

in a certain heap, or benchmark. 

Figure 6. Performance of NEAT model and Generic CV 

model 

The way the AI analyses the game data is one notable 

difference. A neural network used by an NEAT-based AI to 

interpret game data receives input from the game and 

generates output actions based on this input. Contrarily, a CV-

based AI processes game data using computer vision methods, 

which entails examining the game screen and extracting 

pertinent data from it. The manner the AI is trained is another 

distinction. By building a population of neural networks with 

various topologies and using an assessment function to choose 

the best-performing networks to breed and produce the 

following generation, an evolutionary algorithm is used to 

train an NEAT-based AI. Contrarily, supervised learning is 

often used to train CV-based AI. This method entails giving 

the AI labelled training data and using an optimization 

algorithm to modify the network weights and biases in order 

to reduce the error between the expected and actual outputs. 

The degree of interpretability of the AI's decision-making 

process is a third distinction. As an NEAT-based AI is trained 

via an evolutionary algorithm that modifies the connections 

and weights inside the network rather than providing explicit 

rules or guidelines for decision-making, it is often less 

interpretable than a CV-based AI. Contrarily, because CV-

based AI is trained via supervised learning and can be made to 

extract particular traits or patterns from the game screen that 

are important to the decision-making process, it is frequently 

easier to interpret.  

In summation, the processing of game data, training 

methods, and interpretability of decision-making processes 

differ between NEAT-based and CV-based Flappy Bird AIs. 

The project's particular objectives and limits will determine 

the optimal method. 

6. CONCLUSION

The conclusion of the research states that we were able to 

examine the model's operation in this study, including the 

neural network's mathematical processing and visual 

computation. We also learned how to build an AI engine using 

the NEAT algorithm and observed how to improve its 

statistical performance in situations like Flappy Bird. 

We also note that despite having a relatively small 

population, NEAT was able to master Flappy Bird in just 8 

generations, demonstrating its excellent method and high level 

of effectiveness. The simplicity of the solutions generated by 

NEAT makes it incredibly effective, and future games can 

adopt this method to discover the ideal solution in a relatively 

small number of generations. 

Additionally, we were able to predict the time and expected 

number of generations required for the program to learn the 

same thing due to the rigorous learning process. This 

information can be used to optimize the training process for 

future AI agents for Flappy Bird and other games. 

Overall, the conclusion emphasizes the effectiveness and 

potential of the NEAT algorithm for training AI agents for 

games like Flappy Bird. The study suggests that NEAT 

(NeuroEvolution of Augmenting Topologies) can achieve 

impressive results with a relatively small population, 

indicating that it could be a useful tool for solving other 

complex problems in the future. 

This study also implies that NEAT has been tested on a 

complex problem and has achieved impressive results, 

indicating that it could be applied to other complex problems 

in the future. The findings of the study may encourage 

researchers to explore the potential of NEAT for solving other 

complex problems. 

In conclusion, this research suggests that NEAT can achieve 

impressive results with a relatively small population and has 

potential for solving other complex problems in the future. The 

future scopes for NEAT include robotics, artificial intelligence 

for gaming, natural language processing, and healthcare. By 

further exploring the potential of NEAT, researchers may be 

able to develop new and innovative solutions to complex 
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problems in various fields. 
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