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In favor low emissions and high efficiency of fuel cell, Fuel cell is regarded as next 
generation power devices in smart cities and sustainable mobility. Fuel cells convert the 
chemical energy stored in fuels to electricity in an electrochemically way. A suitable 
diagnostic is required to identify the different faults that may occur in fuel cell systems. 
This paper aims at illustrating a novel technique to increase the service life and understand 
the aging mechanisms in fuel cell systems by modifying air flow rate (qwin) and 
humidifying gases to guarantee the proper operation of the PEMFC. In this paper, the 
artificial intelligence technology (i.e. neural network ANN) is used for determining the 
overall performance and resistance losses of PEMFC at numerous operating conditions. 
The proposed model in this study deals with the parameters of the electrochemical 
impedance spectroscopy and polarization curves, to estimate and diagnose the state of 
health of the fuel cell in both case flooding and drying out of the FC. This model identifies 
a set of three parameters of Randles model in different state of humidification, at either 
low or high relative humidity RH conditions. Simulation experiments show that the 
proposed technique enables to monitoring the water management in a simple way that 
helps to define the state of health (SOH) of the PEMFC. 

Keywords: 
PEM Fuel Cells, (SOH), AI technology, 
Neural network model, (EIS). 

NOMENCLATURE 

ANN  
bi  
CPE 

Artificial neuron network  
bias vector of neural network 
identifier Constant Phase Elements 

D diffusion coefficient 
F Faraday constant (A s mol-(1)) 
FCO
V 

fuel cell output voltage 

N number of electrons 
Q  
qwin  
R 

parameter of the CPE 
molar flow air in the inlet (mol/s) 
perfect gas constant (J mol-(1) K-(1)) 

Rd electrical resistance [Ohm] 
RH relative humidity 
Rm membrane resistance [Ohm] 
Rp polarisation resistance [Ohm] 
S active area (m2) 
T  
tm  
u  
V cel 

Temperature (K) 
membrane thickness (m) 
equation of hidden layer’s input 
cell voltage (V) 

W weights of ANN output layer 
Z fuel cell impedance [Ohm] 
ZCPE CPE impedance 
Zw Warburg impedance [Ohm] 

GREEK LETTERS 

α  
δ  
τ
d  

w 

power of the CPE 
diffusion layer width (m) 
the time constant of diffusion 
(s) 
pulsation (rad s-(1)) 

1. INTRODUCTION

The integration of renewable energy including hydrogen
energy become economically and environmentally become 
necessary worldwide. The fuel cell technology is widely 
utilized in many applications, for instance,in the last years, 
there were about 8,000 fuel cell electric vehicles (FCEV) in 
the U.S, 3,600 in Japan, 5,000 in South Korea, 2,500 in Europe, 
and 110 in China, and there have been 44 hydrogen refueling 
stations in the U.S, 112 in Japan, 34 in South Korea, 140 in 
Europe and 12 stations in China. [1]. On the other hand, the 
specialized market of hydrogen technologies claims that over 
56 thousand hydrogen fuel cell cars were sold at the end of 
2022 worldwide and the number of hydrogen refueling station 
is more than 800 in 2022: (European Hydrogen Refuelling 
Stations in 2022 - Tuv Sud– Hydrogen Central (hydrogen-
central.com)). 

There are various applications areas for fuel cells: Banks, 
infrastructure in cities, Hospitals, Telecommunication 
companies, Laptops, Chargers systems and 
radio/communication devices, etc. Generally, the applications 
of fuel cells can be categorized into three main areas: 
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Stationary power generation, Portable and Transportation).  
The mean features are classified in Table 1[1]  

  The research and development in the polymer electrolyte 
membrane fuel cell describes the importance of this 
technology. The fuel cell converts the electrical energy from 
hydrogen chemical energy according to the Equation 1: 

 
O2 + 2H2 → 2H2O + energy + Heat                     (1) 

 
The electrochemical reaction is decomposed by the 

oxidation of hydrogen and the reduce of oxygen as expressed 
in the half reduction of Equation 2, 3: 

 
𝐻 2𝐻 2𝑒  𝐴𝑛𝑜𝑑𝑒                           (2) 

𝑂 4𝐻 4𝑒 → 𝐻 𝑂 𝐶𝑎𝑡ℎ𝑜𝑑𝑒                   (3) 
 

The protons in the membrane passes to the cathode; whilst, 
the electrons conducts inside external charge to the cathode 
side, this process is displayed in Figure 1. 

The (SOH) and the service life of fuel cell are related to the 
fault diagnosis strategy of the PEMFC system. In addition, The 
most popular challenging in the fuel cell are focused around 
the water management, the produced water inside the fuel cell 
should be more than the water of evacuation and evapora- tion 
to confirm the membrane hydrated under each operating 
conditions of fuel cell. Moreover, the ratio of pressure drop to 
flow rate and the flooding degree has been used as an indicator 
to diagnose the state of health of the fuel cell. Therefore, it’s 
logically to diagnose the failure modes and control the state of 
health of the fuel cell during different operating conditions, the  

 
 

Figure 1. Basic PEM Fuel Cell process  
 

Table 1. PEM fuel cell features [1]  
 

PEMFCs features 
Electrolyte Polymeric membrane 
Charge carrier H+ 
Operating temperature –40–1200C (150–1800C in high temp PEMFCs) 
Primary fuel H2, reformed H2, methanol in direct methanol fuel cells 
Electrical efficiency Up to 65–72% 
Primary applications Portable, transportation, and small-scale stationary 
Shipments in 2019 934.2 MW 
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fault diagnosis can be isolate and correct in time. The optimal 
water man- agement ensures the best functioning as well as 
increasing the service life of the fuel cell. 

Numerous methods have been proposed to identify and 
diagnose the state of fuel cell’s health, i.e. semi-empirical, 
empirical, physical, analytical and the black-box models [2]. 
In the literature, most common technique to di agnose the fuel 
cell is the electrochemical impedance spectroscopy (EIS) in 
order to make the hydration monitoring [3], which 
characterizes the values of the impedance parameters based 
on the Randles model of constant phase elements (CPE) 
through estimating the flooding and drying state in the fuel 
cell system.  In general,  the randles model is used to extract 
the parame- ter feature from the EIS, and this model consists 
of three elements, namely Rm, Rp and Zw. The fuel cell’s 

internal resistance is represented by Rm. The polarization 
resistance Rp characterizes the oxygen reduction reaction. 
The limitation of mass transfer represented by Zw. Moreover, 
the parame- ters shown in [4] are directly affected by charge 
transfer, mass transfer and membrane resistance, which are 
used as characteristics to select the defect in different FC 
health states. 

One of the promising method based PEMFC diagnostics, 
becoming im- portant for researchers, is the artificial neural 
networks (ANNs), it provides many advantages compared to 
other traditional techniques that require a large number of 
instruments. Where, several works have empirically demon- 
strated the effectiveness of the ANNs method to diagnose and 
analyze the state of health of the fuel cells. It should be noted 
that ANNs were used in a large scale real-world applications  

Table 2. Previous works on PEMFC diagnosis 

Authors Non-model based method Input variable Output variable Fault type 
On/off 

line 

Jiaping Xie  [2] Support Vector Machine 

Current density, inlet 
pressure, cell temperature, 

gas stoichiometry, Inlet 
humidity 

Rm,Rct,Rw, Tw, 
Pw, Tdl, Pdl 

flooding, membrane 
drying and air 

starvation. 

online 
fault 

diagnosis 

Ali.Mohammadi 
[7] 

Failure modes classification 
both for DC/DC converter 

and PEMFC based on ANN 
Temperatur,pressure,humidity FC stack voltage flooding, drying. online 

Fatima Zohra 
Arama [8] 

Neural networks technique 
Relative humidity, operating 

time, frequency range 

R(int) at high 
frequency , biasing 
resistance at low 

frequency 

flooding or drying Off line 

Khaled 
Mammar [10] 

Application of Adaptive 
Neuro-Fuzzy system 

(ANFIS) 

impedance resistance HF and 
LF humidity 

Relative humidity flooding, drying Off line 

Kui Chen [11] grey neural network model 
load current, temperature 

hydrogen pressure inlet of RH 
voltage of 
PEMMFC 

Degradation 
prediction (drying or 

flooding) 
online 

This study neural networks technique operating time,q(win) Rm,Rp,Rd, FCOV 
Floodin,normal 

operation, drying 
Off line 

 
in various domains, such as fingerprint and speaker 
identification, image analysis, spectroscopy, etc. The 
presented ANN model by this author used a combined 
strategies based on Electrochem- ical Impedance 
Spectroscopy measurement and the stack voltage singularity 
measurement and classification, which facilitates and 
optimize the perfor- mance of the water management [4].The 
main idea behind using ANNs for PEMFC diagnostic is that 
neural network approach presents a high sensitiv- ity to 
identify the parameters of the Randles model and capable to 
predict response of voltage under a sudden change in relative 
humidity[5]. 

To this end, in this paper, we suggest to employ the ANNs 
so we can summary the contribution of our work as follows: 

- A fast prognostic tool to predict the output voltage loss 
in the PEMFC. 

-The neural network method proposed could be effective 
to predict the degradation caused by poor water management 
of the fuel cell (i.e. Flooding, Drying). 

The rest of this paper is organized as follows. Section 2 
related work, Section 3 EIS model, Section 4 ANN model 
(test and simulation), Section 5 results and discussion. 

 

2. RELATED WORK 

Recently, artificial neural networks (ANNs) based 
diagnosing method is widely employed. For instance. Jiaping 
xie et al. [2] proposed a method using multi-stage fault 
diagnosis based on support vector machine.  The fault 
features are selected and determined by an equivalent circuit 
model using the hybrid genetic particle swarm optimization 
algorithm to realize the fault classification online. Jin 
youngpark et al. [6] suggested a fuel cell fault diagnostic 
method by employing artificial intelligence. The proposed 
model detects faults on fuel cell components level. The 
multiple single output neural networks in this model are 
combined with the aim to increasing the performance of the 
fuel cell diagnostics. A developed numerical simulation of 
PEMFC by using sensitive model and neural network 
approach was de- signed by Ali.Mohammadi [7] to diagnose 
each fault in the fuel cell stack and DC/DC converter. While, 
authors in [8] have defined humidity sensor based on NNT 
model to predict the flowed rate water in each operation 
condition. The proposed model can estimate the internal 
resistance for both cases of flooding and drying of the fuel 
cell. R.E. Silva [9] has designed the adaptive Neuro-Fuzzy 
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inference system (ANFIS) model to obtain the variations of 
the output voltage caused by degradation during operation, 
this technique is well adjusted to predict the state of health of 
fuel cell systems, whereas, Khaled Mammar [10] applied 
ANFIS utilizing the spectroscopy (EIS) as an estimator to 
predict humidification inside PEM fuel cell.Authors in [11] 
have presented a novel grey neural network model (GNNM) 
method and the mov- ing window method to predict the 
degradation of PEMFC .The suggested considers the 
influence of different factors e.g. (load current, inlet 
temperature, inlet hydrogen pressure, and inlet relative 
humidity).The developed model was validated the prediction 
performances under different conditions by using three 
PEMFC aging experiments. Table 2 presented the 
comparative between this study and those in the literature 
review. For other works utilizing electrochemical impedance 

spectroscopy in the PEMFC diagnosis, the reader is 
encouraged to refer to [12;13;14;15;16;17]. The use of the 
artificial neural networks and the improved sensor make the 
implementation of the proposed method simple and fast. This 
model is able to easily offer high sensitivity for Randalls 
model parameterization and is able to predict the voltage 
response under sudden change in relative humidity.  Overall, 
it is means that this model can be used in the monitoring 
system and water management to ameliorate the air supply 
humidity. However, the good humid molar air flow 
monitoring of the PEMFC has not been highlighted in the 
literature. Accordingly, further research into a specific 
control algorithm for this model is advised to implement an 
intelligent water management controller. 
 
 

Table 3. Physical parameters of fuel cell in different state [24]  

Test Time[s] Rm[Ω] Rp[Ω] Rd[Ω] Mean cell voltage [V] 
1 (Normal  state) 500 0.00398 0.0080 0.0034 0.6989 
2 1000 0.00406 0.00123 0.0094 0.6238 
3 1600 0.00400 0.0147 0.0172 0.5850 
4 3800 0.00416 0.0163 0.0312 0.53 

5 3980 0.00512 0.0099 0.0051 0.526 

6 5400 0.00685 0.0108 0.0056 0.591 

7 6700 0.00880 0.0130 0.0101 0.56 
* Slow increase of current (around 0.35 [A]) 

 
3. THE PEMFC IMPEDANCE MODEL 

Among the most common methods used to characterize 
and analyze electrochemical devices is the electrochemical 
impedance spectroscopy method. Many researchers have 
used the (EIS) to illustrate the impedance response features 
by injecting disturbed alternative current into PEMFC, which 
allows to extract the parameters of Randles model from the 
obtained signal, (e.g., double layer capacity, charge transfer 
resistance, membrane resistance, and the constant phase 
elements (CPE), etc.). The most applications of (EIS) for 
diagnosing and monitoring the lifetime of fuel cell are based 
on a Ran- dles circuit measurement. Figure2 displays an 
equivalent circuit of PEMFC model. 

 
Figure 2. Equivalent circuit of PEMFC model [18]. 

 
The equivalent impedance of Randles circuit is calculated as: 
[10;18;19]. 

𝑍 𝑗𝑤 𝑅
 ⁄
                (4) 

 
The Warburg impedance is represented as follows: 

𝑍 𝑗𝑤 𝑅
 
                        (5) 

The constant (τd), (Rd) and impedance of constant phase 
element (ZCPE) are expressed as follows, respectively: 

⎩
⎪
⎨

⎪
⎧ 𝜏

𝑅

𝑍 𝑗𝑤

                                (6) 

Accordingly, the PEM fuel cell impedance is given by the 
following equation [18] : 

𝑍 𝑗𝑤 𝑅
 ⁄
               (7) 

Where α = 0.5 when the CPE is the Warburg impedance, and 
α = 1 for ideal capacitance [20;21]. 
 

In order to study the EIS resistances, we focus on the 
analysis of the Nyquist plot. The equivalent circuit of 
Randles-type is used to analyze the impedance response at 
low and high-frequency in semicircle of the Nyquist plot. 

More details about these parameters are given in table 3. 
 
4. PRESENTATION OF ANN CONTROLLER 
MODEL 

4.1 The ANN model 

The systematic diagnostic approaches supported by 
artificial intelligence are of great importance in the field of 
fuel cell development. Among these methods, we have the 
ANN, which is inspired by learning how the human brain 
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works. In the fuel cell system, we have several of inputs and 
outputs. Through the received inputs/outputs relationships 
the ANN model helps to diagnose the fuel cell status in a fast 
way based on three steps: learning, classification and testing. 
Typically, this process can be trained the data for any system 
to learn the ANN model without any physical equations. 

To ensure the connection between the first and third layer 
the neurons of the hidden layer are related by the weights 
using a well-defined transfer function. In this work, the 
transfer function of hidden layer is determined by the 
following equation: 

𝑓 𝑢 .                            (8) 

 
Where the slope of the curve is represented by d and u 

presents the equation of hidden layer’s input [22;23] as 
defined by the following relation: 

𝑢 ∑ 𝑊 𝑋 𝑏                          (9) 

 
The equation of output layer is represented as follow [23]: 
 
𝑦 𝑢 ∑ 𝑤 𝑢 𝑏 ∑ 𝑤 𝑓 ∑ 𝑤 𝑥 𝑏                   
 (10) 
 
where W indicates the weights of output layer. 
 

 

 

Figure 4. a) The performance of the first sub NNT 
training. b) The performance of the second sub NNT 

training. 

 

 
Figure 5. a) Linear regression by first sub ANN model. 

b) Linear regression by second sub ANN model. 
 
4.2 ANN Architecture 

The ANN model is a hybrid model that integrates two 
strategies based on Randles’ physical model with CPE and 
the fuel cell output voltage (FCOV) patterns. Therefore, this 
model is able to identify the hydration state (flooding and 
drying) and diagnose PEMFC failure modes across statistical 
analysis of Rm, Rp, Rd and FCOV losses. The combination 
of two sub-NNT models provides the reliability and 
capability of the neuron network system. The proposed 
method can give free rein to different models get the best 
performance to be practical in the industrial applications. 

 

 

Figure 3. Schematic diagram of ANN model. 
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Figure 3 shows the architecture of the neuron network 
used in this study. The first sub-NNT model is trained by the 
experimental data of Fouquet [24]. The outputs of this sub-
NNT are combined to produce the output of the second sub-
NNT. The input of the first NNT model is bound to the molar 
flow air in the inlet of the fuel cell (qwin) and the operation 
time. The hidden layer contains three under-layers (10, 5, 5) 
neuron for each hidden layer, respectively. In addition, three 
neurons in the outputs layer indicate the Rm, Rp and 
Rdvalues. The activation functions of each hidden layer are 
tansig, purelin and purelin, respectively. The neurons of 
output layer for the first NNT model are bound to the input 

layer of the second NNT model and the fourth input 
represents the operation time. The hidden layer contains two 
under-layers (5, 4) neuron for each hidden layers, 
respectively. The output layer represents the V(CELL) to 
describe the (SOH) of the fuel cell. The logsig and tansig 
functions are used to estimate the parameters of each layer, 
respectively. The ANN model parameters are tabulated in 
Table 3. Thus, in this paper, the ANN is trained by the 
experimental samples to obtain the failure diagnosis sensor. 
The test samples are then used to confirm the accuracy of the 
fault diagnosis model. Through this method, the accuracy of 
the state of health is can be extremely increased. 

 

 
Figure 6. a) The output errors of the first sub NNT. b) The output errors of the second sub NNT. 

 
We have proceeded to illustrate the values of 

experimental model from [19;24] as shown in the table 4. 
 

Table 4. ANN Parameters and training 

Parameters ANN 1 ANN 2 
Imput 2 4 
Output 3 1 

Nbr of 
neuron 

 

HL 1 10 5 
HL 2 5 4 
HL 3 5 / 

 
Activation 
fonctions 

 

HL 1 tansig logsig 
HL 2 purelin Logsig 
HL 3 purelin / 

Output 
layer 

tansig tansig 

Epouch 1000 664 
Performance 3.73*10-08 9.99*10-7 

Gradiant 1.31*10-06 2.79*10-6 

Mu 1.00*10-09 1.00*10-8 

 

Figure 4 shows the performance of the ANN training and 
the number of epochs for each ANN model, while Figure 5 
presents the relationship between the experimental results 
and that obtained by the NNT model Figure 6 shows the 
output errors of each ANN model, where the output errors is 
about 10−7, this proves the ANN model learning reliability. 

5.  RESULTS AND DISCUSSION 

Through the proposed method, we give (qwin) variation 
during deferent time’s period under Matlab for each 
simulation, from 0 to 500 s at normal operating conditions, 
from 500 s to 3800 s at flooding conditions and from 4000 s 
to 8000 s at drying conditions, where we can observe the 
effects of this variation in the parameters of Randles model 
obtained by the first sub-NNT. Figure 7 a to d displays and 
compares the results attained using the first sub-ANN as 
following: 

Between the two intervals [0 - 500 s] and [3800 - 4000 s], 
the parameters of Randles model are constant which means 



Accurate Estimation of PEMFC State of Health using Modified Hybrid Artificial Neural Network Models / J. New Mat. Electrochem. Systems 
 

the system is operating under nor- mal operating conditions 
while the qwin remains constant at (2 ∗ 10−5)mol/s 

During the flooding state the value of qwin is 5mol/s 
inside the PEM fuel cell.  We notice that the values of Rp and 
Rd increase within 500 to 3800 s. 

An increase gradually of the (Rm, Rp and Rd) could be 
seen after 4000 s, during this phase qwin is decreased to 0.2 
mol/s in order to illustrate the effect of membrane dryness. 

Figure 7e illustrates the fuel cell voltage during each time 
period. The fuel cell voltage’s response is given by second 
sub-ANN to display the vari- ations effect of the parameters 
of Randles model for the state of health of the fuel cell. In the 
period of 0 s to 500 s (i.e., normal conditions), we can 
observe that the fuel cell’s voltage remains constant, besides, 
the Resistances of Randles model conserve its values, this 
means the effectiveness of the fuel cell. 

 

 
(a) 

 

 
(b) 

 

 
(c) 

 
(d) 

 
(e) 

 
Figure 7. a-d) parameters of Randles model during 

different state. e) fuel cell voltage during different state 
 

In addition, we find a drop in the fuel cell voltage  during  
the second test (flooding case). The drop voltage refers the 
increase of membrane ionic conductivity as shown in Figure 
7 e. Moreover, within 4000 s the progressive voltage drop is 
clearly visible, which correlates with a gradual increase in 
(Rm, Rp and Rd). 

Depending on these results, the reduction of the voltage 
is directly related to water content accumulate inside the 
channels of the Fuel Cell owing to the affection of water 
content on the membrane conductivity. When the RH 
increases, the conductivity of membrane also increases, 
consequently the slow decrease in the FC voltage is 
influenced by the flood phase. 

To sum up, the proposed method could estimate the state 
of hydration based on the relative humidity variation into 
PEMFC and the change of the randles model parameters. 
Therefore, the used artificial neural network in this study 
helps to know how humidity affects fuel cell voltage. 

 
 
 



39 
 

Table 5. Comparison of related and recent study on PEMFC diagnosis 
 

Approaches Idea Hard/ software Advantages Drawbacks Ref 

Neural 
networks 
technique. 

✓ NNT model has been 
proposed to estimate (RNNT 
int, RNNT pol) in both drying 

and flooding conditions. 

✓ NNT learning 
phase 

✓ Data-based 
collection 

performed by a 
backpropagation 

algorithm 

✓ Its prediction is accurate. 
✓ It requires a large 

number of data. 
(8) 

Invasive 
diagnostic 

technique, using 
a new 

measurement 
technique of the 
local magnetic 

field. 

✓ The internal magnetic field 
sensors are inserted into the end 

plates of the stack. 
✓From the measurements of 

the fields, the current density is 
calculated directly. 

✓ Magnetic field provides an 
image of the MEA current 

distribution. 

✓Film-formed gas 
temperature 

sensor 
✓S++ Simulation 

Services 

✓ The measurement is 
carried out as close as 
possible to the fault. 
✓The exploitation is 

generally direct 

✓ Inserting the sensors 
into the PEMFC stack 
changes its intrinsic 

behaviour 
 

(25) 

The in-situ 
diagnostic 

applications, by 
measuring the 
magnetic field 
and variations 
in the voltage. 

✓This technique has been 
validated on a 300 watt stack. 
✓15 tri-axis sensors were 

inserted every 4 cells. 
✓The current density was 

calculated from the 
measurement of the magnetic 
field by the PEMFC included 

probes 

✓ Magnetic field 
sensors inserted 
into the cooling 
channels of the 
PEMFC stack 

✓ Non-destructive and 
enabling non-contact 

measurements. 
 

✓The difficult to 
distinguish between 
the effect of the fault 
and the effect of the 

presence of the sensor 

(26) 

Total Harmonic 
Distortion 

Analysis (AVL 
THDA). 

✓ The technology of (AVL 
Total Harmonic Distortion) 

monitors changes in the voltage 
of a single cell without the need 

for V (cell) measurements. 

✓Databases of up 
to several hundred 
voltage channels. 

✓Significantly reduces 
wiring 

✓contacting and hardware 
required 

✓There are no 
conceptual changes are 
necessary for already 

expended stack 
designs to perform this 

system. 

(27) 

Implementation 
of 

electrochemical 
impedance 

spectroscopy 
(EIS) function 

in power 
transformer 
management 

✓The proposed EIS is 
incorporated into this 

technology for improved 
diagnosis and control. 

✓Real time EIS was used. 

✓The EIS is 
achieved by the 

power converter. 

✓Monitor variations using 
EIS results for onboard 
diagnostics or control 

improvement. 

✓Computationally 
expensive. 

✓Requires additional 
equipment for EIS 

measurements. 

(28) 

The acoustic 
emission AE 
technique. 

✓EIS and AE measurements 
were performed while drying of 

the Nafion samples. 
✓The obtained electrochemical 

parameters measurements 
produce monotonic exponential 

responses after water loss. 

✓Piezoelectric 
transducer. 
✓Specific 
measuring 

instruments. 

✓Non-destructive promising 
method for fuel cell 
component analysis 

✓Requires large 
database resulting 

from experimental EIS 
use of PEMFC 

(29) 

AC impedance 
technique in the 

diagnosis of 
PEMFC 

✓Both in situ and ex situ 
impedance measurements are 

discussed, examined and 
presented in typical EIS in 
various common scenarios. 

✓Potentiostatic. 
✓measurements at 
different modes of 

gas-feeding. 
✓galvanostatic 
measurements. 

✓A fast AC impedance 
technique is briefly 

examined. 

✓The impedance of a 
single electrode cannot 

be obtained directly, 
this disadvantage has 
little effect in most 

cases. 

(30) 

The EIS and 
polarization 

curves method 
using a Neural 

networks 
technique. 

✓The ANN model in this study 
used a combined strategy based 

on EIS measurement and the 
stack voltage singularity 

measurement and classification. 
✓Estimating and diagnosing 

the health status of a fuel cell in 
both case flooding and drying 
out uses artificial intelligence 

technology. 

✓NNT learning 
phase and data-
based collection 
were performed 

by 
backpropagation 

algorithm. 

✓Fast prognostic tool to 
predict the output voltage 

loss in the fuel cell. 
✓The neural network model 
proposed could be useful to 

predict the degradation 
caused by poor water 

management of the fuel cell 
(i.e. Flooding, Drying). 

✓Easy, quick to implement 
✓low cost. 

✓It is recommended 
that further studies 

develop a more 
specific control 

algorithm for this 
model to implement an 

intelligent water 
management controller 
with potential targets 
for reconfiguration 

control and/or 
preventive 

maintenance to be 
adapted into the 

technical challenges. 

Propo
sed 

metho
d 

 
6. COMPARATIVE METHODS 

A summary of the most relevant criteria of different 
studies for PEMFC diagnostic compared to the suggested 

method is given in Table 5, The sug- gested model in this 
study provides many advantages compared to other 
techniques that require a large number of database and 
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instruments, and this justified by the comparative analysis in 
term of fast accurate prognostic, quick to implement and low 
cost. 
 
7. CONCLUSIONS AND PERSPECTIVES 

Accurate the state of health is critical in practical 
applications which is important to avoid the frequent 
mistakes that occur owing to poor water management inside 
the fuel cell membrane. Therefore, in this paper, we have 
developed a new sensor model using AI technology to 
determine the overall performance and resistance to PEMFC 
losses during different oper- ating conditions. Based on the 
experimental data extracted from [24], the first sub-ANN 
model is trained to obtain the parameters of the Randles 
model, and based on the achieved outputs; the second neural 
network model is trained to obtain the fuel cell voltage 
output. Moreover, we can use the combination between the 
analysis of the parameters of Randles model and the drop 
output voltage pattern of the fuel cell to improve SOH 
diagnosis in both cases: flooding and drying. Overall, our 
model can contribute to get good diagnosis without the 
requirement for costly tools. Moreover, the pro- posed 
method will be considered for predicting the degradation of 
PEMFCs in future research works. Further studies needs to 
be addressed to develop a more specific control algorithm for 
this model to implement an intelligent water management 
controller based on another method of estimating overall 
performance and resistance to PEMFC losses during different 
operating con- ditions, with potential targets for 
reconfiguration control and/or preventive maintenance. 
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