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In this paper, we have analyzed a numerical study of free convection in porous media 

modeled by the Darcy-Brinkman-Forchheimer equation at low Grashof numbers; in a 

porous square enclosure. The right wall is maintained at a hot temperature and the left wall 

at a cold temperature, while the horizontal walls are adiabatic. A Fortran code based on the 

finite difference method and the (-) algorithm was used to solve the equations that 

govern physical phenomena. The effects of Grashof Gr, Darcy Da and Prandlt Pr numbers 

were studied. The results showed that increasing the dimensionless parameters (Gr, Da, Pr) 

improves the heat transfer rate. Moreover, the local and mean Nusselt number is larger 

depending on these parameters. The horizontal and vertical velocities in the cavity in the 

middle of the wall are presented. 
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1. INTRODUCTION

Solid material with fine geometry, also called matrix, 

containing pores or small cavities and which can contain one 

or more fluids (liquid or gas). 

This definition leads to the notion of porous medium. A 

porous structure is said to be closed when the pores are not 

connected to each other and are inaccessible to water and air 

since they do not emerge on the surface, and open when the 

pores are connected to each other, forming very narrow 

channels. purposes. A porous material is also characterized by 

its specific surface, its geometric tortuosity, and the 

distribution of grain and pore sizes within the solid.  

The study of porous media consists in analyzing materials 

which have a solid structure containing pores. The fluid can 

flow through this medium. for example, we find sand, soil, 

sponges, ceramic materials ... etc. [1].  

The shape and size of these pores is not uniform, it differs 

from one medium to another [2]. 

Many works have been carried out to exploit this 

phenomenon among them we can cite: 

Garoosi et al. [3] presented a model of natural and mixed 

convection in porous media in a square cavity in the presence 

of nanofluids. Munshi and Alim [4] analyzed a digital study of 

mixed hydromagnetic convection in a square cavity driven by 

a double cover. 

Hossain and Wilson [5] presented an important work of the 

flow of natural convection in a porous medium in cavities with 

non-isothermal walls in the presence of a generation of heat. 

Lam and Prakash [6] simulated natural convection with 

entropy generation in a porous cavity with heat sources the 

physical model generally considered consists of a square 

cavity maintained on its side faces at different temperatures [7-

10]. 

After this bibliographical study we noticed that the 

numerical approach method is almost always the finite volume 

method, we decided to work with the finite differences by 

eliminating the term of the pressure by (-) algorithm at low 

Grashof numbers we will use a Fortran and Comsol code to 

clearly figure out the influence of different parameters on the 

heat transfer in a porous medium. 

2. DOMAIN GEOMETRY

In a porous square cavity, a fluid circulates between the 

existing pores, whose right wall is at a hot temperature (Th) 

and the left wall at a cold temperature (Tc), while the 

horizontal is adiabatic. The flow is modeled by the Darcy –

Brinkman equation in porous media and the Navier-Stokes 

equation in the fluid region (Figure 1). 

Figure 1. Domain geometry 

The heat flow is given by: 

At the right wall 

𝑄 = −𝐾. 𝐴.
𝑑𝑇

𝑑𝑥
⟦𝑥 = 1  = ℎ. 𝐴(𝑇𝑓 − 𝑇)
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3. MATHEMATICAL FORMULATION 

 

3.1 Flow equation in porous media 

 

The equations governing the flow are the continuity 

equations, momentum equation, and energy, respectively: 
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In order to make the problem as general as possible we 

proceed to the following change of variables: 
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The introduction of the preceding dimensionless variables 

in the differential Eqns. (1)-(4), in addition to the two numbers 

Pr, Gr; results in the following dimensionless mathematical 

model: 
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By deriving Eq. (6) and Eq. (7) with respect to Y and X 

respectively, then by subtracting the two equations obtained, 

we will introduce the vorticity defined by [11, 12]: 
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By definition the velocity vectors are given by [15]: 
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By replacing U and V by their formulas in Eq. (9) we find: 
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3.2 Nusselt number 

 

Local Nusselt number, is calculated by: 
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The mean Nusselt number along the hot region is calculated 

by the integral of Eq. (12), which translates to: 
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where, h represents the average heat transfer coefficient. 

 

3.3 Boundary Conditions 

 

Solving the system of equations obtained previously 

requires knowledge of the boundary conditions for each 

independent variable. 
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The vorticity conditions are identical on all the walls, and 

can be noted as follows: 𝜔=𝜔𝑝, with [13]; 
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Obtained from a first order discretization where p: 

designates the wall and ∆η the space step in the direction 

normal to this one. 

 

 

4. NUMERICAL FORMULATION 

 

We have used the finite difference method (explicit scheme) 
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for the discretization of the differential equations which is 

conditionally stable [14], a two-dimensional numerical 

resolution of the vorticity and energy conservation equations 

has been implemented to simulate the circulation of air and 

temperature field in the enclosure. The resolution is carried out 

by the "FORTRAN" language, based on the method of Gauss 

Seidel [15]. 

The formulation (φ-ω) requires simultaneous processing of 

the three equations: energy equation, vorticity and current 

function. The main steps are summarized by the following 

algorithm: 

• Definition of the computation domain and data reading. 

• Mesh generation. 

• Introduction of initial and boundary conditions. 

• Beginning of the time loop. 

• Solving the equation of energy and vorticity. 

• Solving the equation of the current function using the 

nonlinear over relaxation (NLOR) method. 

• Calculation of speeds (U, V). 

• Calculation of wall vorticity. 

• Time increment (τ + ∆τ). 

• Repeat calculations until steady state is reached. 

• End of the time loop. 

• Printing of results. 

 

 

5. RESULTS AND DISCUSSION 

 

A code was created in FORTRAN language, where the 

following simulation data are introduced (Table 1). 

 

Table 1. Simulation data 

 
Parameter  signe value 

Mesh i × j 81 × 81 

Porosity  0.9 

Darcy number Da 0.01 

Prandtl number Pr 0.71 

step of time dt 1e-5 

Grashof number Gr 10 

 

5.1 Grashof number effect 

 

In reason to study the effect of the Grashof number on 

natural convection in porous cavity, numerical simulations 

were made for different values of the Grashof number (Gr =1-

10-30) 

The geometry considered is a square cavity containing air, 

the right wall of the enclosure is at (Tc) and the left at a cold 

temperature (Tf), while the horizontal walls (lower and upper) 

are adiabatic. The parameters held constant in this section are: 

Pr = 0.71, ε = 0.9 and Da = 0.01.  

We first notice in the figure that there is a movement of the 

fluid in a counterclockwise direction, that is to say from the 

hot region to the cold region. 

During its journey, the fluid particle absorbs heat from the 

hot wall, its temperature rises by making an upward movement 

to give up heat to the cold wall while descending, and after it 

comes back to lick the cold wall and the same phenomena 

occur. 

There are three structures: the vertical boundary layers, the 

horizontal boundary layers and the cell region. 

With increasing Grashof numbers the boundary layers 

become thin and the area of the cell widens, if one continued 

to increase the Grashof number of the cell would widen and 

break up. 

 

 
(a) 

 
(b) 

 

Figure 2. Surfaces of (a) functions of isothermal currents (b) 

for Da=0.01, =0.9, Pr=0.71 

 

This phenomenon is explained by the increase in inertia, and 

therefore in convection speeds. The thermal fields presented 

by the temperature contours for the different Grashof numbers 

are shown in Figure 2, we can see that at Gr=1, the isothermal 

lines are almost vertically aligned. and this can be explained 

by the dominance of conduction over convection (Figure 2).  

 

5.2 Effect of Darcy number  

 

To study the influence of the Darcy number on free 

convection, calculations will be made for different values of 

Darcy number (Da = 10-3, 10-2, 10-1). 
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(a) 

 
(b) 

 

Figure 3. Surfaces of (a) functions of isothermal currents (b) 

for Gr=10, =0.9, Pr=0.71 

 

Figure 3 shows the current lines and isotherms, in the porous 

square cavity. 

At low Darcy number, Da = 10-3, fluid movement in the 

cavity is low, when we increase the Darcy number from 10-3 

to 10-1, the viscous effects become more important and 

therefore the heat transfer by convection will be more 

significant. 

 

5.3 Effect of Prandtl number  

 

The study of the influence of this parameter is made by 

several authors, we quote [15, 16] whose showed that the 

number of Pr is the most important parameter in the study of 

heat transfer 

In this section, we analyze the influence of Prandtl number 

in a porous square cavity. 

A series of calculations were performed by scanning the 

entire range of the Prandtl number,). The values of the number 

of Prandtl chosen are: Pr = 0.1- 0.71 - 10. The parameters held 

constant in this section are: Gr=10, =0.9, Da=0.01. 

As Prandtl's number is increased from 0.1 to 10, the heat 

transfer by free convection effects become more prominent. 

 

5.4 Profiles of velocity 

 

 
(a) 

 
(b) 

 

Figure 4. Profiles de Vitesse (a) horizontals (b) verticals for 

=0.9, Da=0.01, Pr= 0.71 

 

The profiles of the velocity components in the middle of the 

enclosure for different Grashof numbers are shown in the 

Figure 4. 

The results obtained are in good agreement with the 

previous results, the horizontal and vertical speed profiles 

show very remarkable peaks for the large values of the 

parameters studied. 

 

5.5 Number of Nusselt  

 

Figure 5 presents the variation of the local Nusselt number 

Nu, for different parameters. 
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The Nusselt value clearly indicates that, the heat transfer 

conduction mode is dominant for low values of Pr, Da, Gr 

numbers (Figure 5). 

 

 
 

Figure 5. Local Nusselt number 

 

5.6 Mean Nusselt number 

 

Table 2. Mean Nusselt number 

 
Parameters Effect of Gr Effect of Da Effect of Pr 

Values 1   10   30 10-3 10-2 10-1 0.1 0.71 10 

Nu m 4.19 7.35   9.5 2.29 7.35 8.65 3.49 7.35 19.15 

 

Table 2 shows the variation of average Nusselt number, for 

different values of porosity, Grashof number Darcy and 

Prandtl numbers. 

It can be noted that the Nusselt number increases with 

increasing of these parameters. 

 

5.7 The sensitivity of the grid 

 

The value of the mesh steps is an important factor on which 

it directly depends on the precision of the numerical results. In 

order to minimize the influence of this mesh on the solution 

we carried out several simulations by comparing the values of 

the average Nusselt number. The results obtained are given by 

Table 3. 

 

Table 3. Comparison of Nusselt number of different grids 

 

i×m Nu m Error (%) 

81×81 5.483370 26.473860% 

31×31 3.659899 50.924660% 

101×101 7.457715 - 

 

The number of Nusselt for a mesh of (101×101) is taken as 

reference for the calculation of the error expressed in 

percentage. 

According to the results, we decided to work with a mesh of 

(81×81). Where the Error is calculated by: 

𝐸𝑟𝑟𝑜𝑟 = ⌊
𝑁𝑢𝑚(101 × 101) − 𝑁𝑢𝑚(𝑖 × 𝑚)

𝑁𝑢𝑚(𝑖 × 𝑚)
⌋ × 100 

 

 

6. RESULTS OF COMSOL CODE 

 

Comsol is used by several authors such as [17, 18] who have 

simulated finite element heat transfer 

 

6.1 Validation of Comsol code 

 

In the first place we carried out the work of article [5] for 

the validation of the work. We entered their data their 

parameters in detail in the code of Comsol without any 

changes. 

 

 
 

Figure 6. Domain geometry and boundary conditions [5] 

 

 
 

Figure 7. Result of temperature gradients 

 

The geometry of the study [5] is square and contains the 

following boundary conditions: (Figure 6). 

The results obtained for the same geometries by Comsol are 

shown in the Figure 7:  

The Conjugate Heat Transfer in porous media, Laminar 

Flow Multiphysics interface is used to simulate the coupling 

between heat transfer and water flow. 

It combines the Heat Transfer in Solids and Laminar Flow 

interfaces. The Non-Isothermal Flow Multiphysics coupling is 

automatically added.  

We notice that the heat transfer propagates over time in a 

remarkable way. View the scale of temperature we can clearly 

see that the transfer by conduction convection is more 

important in the case of systems with Cartesian coordinates. 

After having validated our work in relation to the study [5] 

we have changed the geometry, the boundary conditions the 
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parameters, and after carrying out all the steps, we modified 

the mesh, and finally we had the following results. 

 

6.2 Velocity 

 

The field of the velocity vector of the flow is shown in 

Figure 8. 

 

 
 

Figure 8. Domain of velocity of present geometry 

 

The flow is symmetrical by compared to the half height of 

the channel. Away from the entrance, the flow is developed 

following the horizontal direction. The developed flow is 

unidirectional (with a totally horizontal speed) and 

unidimensional because this speed depends only on the 

vertical coordinate. In the vertical direction, the horizontal 

speed is zero at the walls. Moving away from these, the speed 

horizontal increases rapidly and becomes uniform from a 

distance equal to 0.2 of each wall. The uniform speed value is 

1. 

We have found it useful to show this velocity vector field in 

order to visualize the development of the flow. Indeed, we note 

that, in the case where the natural convection predominates the 

flow develops mainly along the hot wall and propagates along 

the upper wall before the exit. We also notice that in the rest 

of the cavity the water forms low intensity recirculation zones. 

 

6.3 Pressure 

 

 
 

Figure 9. Domain of pressure of present geometry 

 

The flow obtained is uniform. The horizontal speed is 

constant and maintains its input value. The vertical speed is 

everywhere zero. The pressure drop is axial but the pressure 

does not undergo any vertical variation. It has been found and 

verified that Darcy's regime is dominant. 

The uniform flow of the Darcy regime is due to the low 

value of the Darcy number. 

Thus, depending on the direction of the flow, the convective 

terms, the Forchheimer term and the Brinkman terms are very 

weak compared to the Darcy terms and the pressure gradient. 

When the stationary regime is established, the temporal 

variation is zero and the Darcy and pressure gradient terms are 

balanced (Figure 9). 

 

6.4 Temperature 

 

The hot air at the inlet undergoes rapid axial and transverse 

cooling. This is due to the axial convective effect of the 

uniform flow combined with the diffusion of heat transverse 

increased by the thermal conductivity of the porous medium. 

The inlet temperature drops axially and approaches 

asymptotically from that of the walls, from the axial position 

of the middle of the geometric configuration (Figure 10). 

 

 
 

Figure 10. Domain of temperature of present geometry 

 

6.5 Isothermal contours 

 

The isotherms are shown in Figure 11. The distribution of 

heat in the cavity is in accordance with the circulation of the 

water revealed by the is currents (Figure 12). Indeed, we note 

a heating of the water starting from the entry, all along the right 

wall to the left. 

We observe that the isotherms represent an almost linear 

evolution starting from the cold wall inside the cavity. So the 

temperature distribution is linear as we observe a strong 

temperature gradient in the vicinity of the left isothermal faces. 

 

 
 

Figure 11. Isotherm contours of present geometry 
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(a) 

 
(b) 

 

Figure 12. Surfaces of (a) functions of isothermal currents 

(b) for Gr=10, =0.9, Da=0.01 

 

 

7. CONCLUSION 

 

The simulation of natural convection in a porous square 

cavity containing a fluid was presented the right and left walls 

of the cavity are at different temperatures, while the top and 

bottom walls are kept adiabatic. 

The influence of Grashof, Darcy, and Prandtl numbers, 

were studied. 

We have found that Nusselt number increases by increasing 

porosity and also Grashof, Darcy and Prandtl numbers. 

The results obtained are in good agreement with the 

previous results, the horizontal and vertical velocity profiles 

show very remarkable peaks for the large values of the 

parameters studied. 

By comparing our results with those of the works already 

mentioned in the introduction, we find that the influence of the 

dimensional parameters is more noticeable in the case of low 

Grashof numbers. 
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NOMENCLATURE 

 

Nu Average Nusselt number  - 

NuL local Nusselt number - 

p Pressure Pa 

P Dimensionless Pressure, 𝑝𝐿2/𝜌 ν² - 

Pr Prandtl number, ν/α - 

Gr Grashof number, g β(Th-Tc)L3/ν2 - 

T Temperature K 

Th Hot wall Temperature K 

Tc Cold wall Temperature K 

u Horizontal velocity Component m/s 

U Dimensionless Horizontal velocity 

Component 

- 

v vertical velocity Component m/s 

V Dimensionless vertical velocity 

Component 

- 

Da Darcy number, 𝑘
𝐿2⁄  - 

Fc Forchheimer coefficient, 

(=1.75/√150𝜀
3

2⁄
) 

- 

k Permeability m2 

g Acceleration of gravity m/s2 

L Height of the cavity m 

h Local heat transfer coefficient w/m2.K 

 

Greek symbols 

 

τ Dimensionless time  

α thermal diffusion m2/s 

 dimensionless temperature  

𝛽 Coefficient of thermal expansion K-1 

𝜈 kinematic Viscosity of fluid m2/s 

𝜌 fluid density g/m3 

Ψ current function  

𝜔 Vorticity  

 porosity  

Φ basis function  
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