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Conducting research on urban building thermal comfort using traditional methods is time-

consuming and labor-intensive, and obtaining high-quality data over a large area is 

difficult. Moreover, the accuracy of publicly available climate data and building parameter 

data may be insufficient, affecting the research results. When dealing with complex data, 

errors may arise, necessitating further validation and empirical research. ArcGIS is a 

geographic information system software used for processing and analyzing geographic 

data, while building parameters encompass factors such as building morphology, materials, 

and greening. By conducting research on improving urban building thermal comfort based 

on ArcGIS and building parameters, a basis for policy formulation and implementation can 

be provided, guiding urban planning and architectural design. This study investigates 

improvement measures for urban building thermal comfort based on ArcGIS and building 

parameters. The classification of sample data required for urban building thermal comfort 

research is provided, and by combining logistic regression with ArcGIS spatial statistics 

and spatial analysis, influencing factors of urban building thermal comfort are explored 

from different perspectives, enhancing the comprehensiveness and depth of the study. A 

human thermal comfort model within urban buildings is constructed, and the principles for 

constructing an adaptive thermal comfort model are presented. Experimental results 

validate the effectiveness of the proposed method. 
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1. INTRODUCTION

As urbanization accelerates, urban population density and 

building density continue to rise, gradually revealing the urban 

heat island effect [1-5]. Thermal comfort significantly affects 

the quality of life and health status of urban residents [6-11]. 

Therefore, researching improvement measures for urban 

building thermal comfort and providing a scientific basis for 

urban planning and architectural design are of great 

importance for enhancing the quality of life of urban residents 

[12-18]. The method based on ArcGIS and building 

parameters can effectively evaluate and improve urban 

building thermal comfort. ArcGIS is a geographic information 

system software used for processing and analyzing geographic 

data, while building parameters encompass factors such as 

building morphology, materials, and greening [19-21]. By 

conducting research on improving urban building thermal 

comfort based on ArcGIS and building parameters, a basis for 

policy formulation and implementation can be provided, 

guiding urban planning and architectural design. The research 

results can promote the transformation of the construction 

industry towards green buildings and sustainable development, 

providing support for mitigating global climate change and 

environmental issues. 

Global climate change has exacerbated the differences in 

indoor thermal environments and thermal adaptability of 

traditional residences, but quantitative research in this area still 

needs updating and improvement. Wang et al. [22] took new 

and old traditional residences in Guangfu Ancient City, Hebei 

Province, China, as an example, using subjective 

questionnaire surveys and objective data measurement 

methods to investigate residents' indoor thermal environment 

status and thermal comfort characteristics. The measured data 

show that the average indoor temperature of old traditional 

residences in winter is far below the human thermal comfort 

range, while in summer, it is higher than the relevant standards. 

Danks et al. [23] collaborates with urban practitioners to 

develop guidelines for defining simulation methods and 

acceptable standards to ensure robust and consistent 

assessments of the impact of new developments on overall 

outdoor thermal comfort. The development of these guidelines 

is introduced, including the evaluation of the appropriateness 

of different thermal comfort indices and climate data sources, 

the establishment of baseline condition urban thermal comfort 

simulations, and the definition of what is acceptable and what 

is not acceptable standards. Imran et al. [24] assessed the 

impact of land use and land cover (LULC) changes in 

Chittagong, Bangladesh, from 1993 to 2020 on summer and 

winter surface temperatures using remote sensing (RS) and 

geographic information systems (GIS). Furthermore, the study 

assesses the impact of summer LULC changes on HTC, as 

LST has a significant impact on HTC in summer. 

Kalogeropoulos et al. [25] aims to investigate the urban heat 

island effect by assessing outdoor thermal comfort conditions 

in medium-sized cities. More specifically, the current study's 

approach includes: (i) combining different monitoring 
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techniques to quantify the urban heat island effect in 

Mediterranean medium-sized cities, applying in-situ 

measurements and remote sensing techniques to assess the 

urban heat island effect from both canopy (CUHI) and surface 

(SUHI) perspectives; (ii) identifying the parameters 

influencing thermal comfort, as well as determining the most 

suitable bioclimatic index for outdoor thermal comfort in the 

city of interest. In summer, questionnaire surveys and field 

measurements were conducted on sidewalks in Zante, Greece. 

Urban building thermal comfort research methods mainly 

include field investigation and measurement, simulation and 

calculation, statistics and data mining. Field investigation and 

measurement methods are time-consuming and labor-

intensive, and it is difficult to obtain high-quality data within 

a large range. At the same time, publicly accessible climate 

data and architectural parameter data may not be accurate 

enough, affecting research results. Although simulation 

methods can consider various factors, they still involve a 

certain degree of simplification and assumptions, which may 

lead to discrepancies between simulation results and actual 

situations. Statistical and data mining methods may have 

errors when dealing with complex data and require more 

verification and empirical research. Therefore, when 

conducting urban building thermal comfort research, these 

shortcomings should be considered. This article conducts 

research on urban building thermal comfort improvement 

measures based on ArcGIS and architectural parameters. 

Chapter 2 of the article provides the classification of sample 

data that needs to be collected in urban building thermal 

comfort research, combines logistic regression with ArcGIS 

spatial statistics and spatial analysis, and explores the 

influencing factors of urban building thermal comfort from 

different perspectives to improve the comprehensiveness and 

depth of the research. Chapter 3 constructs an urban building 

human thermal comfort model and provides the construction 

principle of the adaptive thermal comfort model. The 

experimental results verify the effectiveness of the proposed 

method. 

 

 

2. URBAN BUILDING THERMAL COMFORT 

ANALYSIS MODEL 

 

In the study of urban building thermal comfort distribution, 

thermal comfort can be divided into multiple categories (such 

as comfortable, uncomfortable, etc.) and associated with 

architectural parameters, climate data, and other factors. 

Through the logistic regression model, the contribution of each 

influencing factor to thermal comfort can be quantitatively 

evaluated, providing a basis for research. ArcGIS spatial 

statistical tools can be used to analyze the spatial distribution 

characteristics of urban building thermal comfort. By using 

kernel density estimation, spatial autocorrelation, and other 

spatial statistical methods, the spatial aggregation and 

dispersion rules of urban building thermal comfort can be 

revealed. Moreover, by conducting spatial regression analysis 

of thermal comfort and its influencing factors, the reasons for 

the differences in thermal comfort in different regions can be 

further explored. ArcGIS spatial analysis tools can be used to 

evaluate and optimize urban building thermal comfort 

improvement measures. Through buffer zone analysis, 

network analysis, and other methods, areas with lower thermal 

comfort in cities can be identified, providing reference for 

optimizing building layout, increasing green coverage, and 

other improvement measures. This article combines logistic 

regression theory, ArcGIS spatial statistical tools, and spatial 

analysis tools to carry out urban building thermal comfort-

related research. By combining multiple analysis methods, the 

influencing factors of urban building thermal comfort can be 

explored from different perspectives, improving the 

comprehensiveness and depth of the research. Figure 1 shows 

the research framework of the article. 

The types of sample data that need to be collected in the 

urban building thermal comfort research conducted in this 

article are shown in Figure 2, mainly including the following 

aspects: 

(1) Building geographic information: basic geographic 

information such as the location, coordinates, and elevation of 

buildings, which is helpful for spatial analysis and 

visualization. 

(2) Architectural parameters: including building 

morphology (such as building height, volume, surface area, 

etc.), building orientation, building materials (such as exterior 

wall materials, roof materials, etc.), window area and 

distribution, green coverage (such as green area, tree species 

and quantity, etc.), and other factors that may affect the 

building's thermal comfort. 

(3) Climate data: meteorological parameters such as 

temperature, humidity, wind speed, and solar radiation, which 

have a direct impact on building thermal comfort. 

(4) Thermal comfort indicators: indicators such as Predicted 

Mean Vote (PMV) and Standard Effective Temperature (SET) 

for evaluating thermal comfort within buildings. 

 

 
 

Figure 1. Research framework 

 

 
 

Figure 2. The types of sample data collected 
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(5) Human comfort perception data: the thermal comfort 

perception data of residents can be collected through 

questionnaires, field observation, etc., to more accurately 

evaluate thermal comfort. 

(6) Auxiliary data: other related data that may affect thermal 

comfort, such as urban planning data, population density, 

traffic conditions, etc., which can help researchers more 

comprehensively analyze the influencing factors of urban 

building thermal comfort. 

When conducting urban building thermal comfort research 

based on ArcGIS and architectural parameters, it is necessary 

to collect as much of the above data as possible and preprocess 

the data for subsequent analysis and model construction. At 

the same time, attention should be paid to data quality and 

accuracy to ensure the reliability of research results. 

In the logistic regression analysis of urban building thermal 

comfort scenarios, the research problem can first be modeled 

as a binary classification problem, i.e., thermal comfort is 

classified as "comfortable" or "uncomfortable." The 

dependent variable is thermal comfort, the independent 

variables are the factors influencing thermal comfort, and the 

random error term represents the part of the model that cannot 

be explained. 

(1) Dependent variable: Thermal comfort, set as a binary 

variable, e.g., 1 represents comfort, and 0 represents 

discomfort. 

(2) Explanatory variables: Factors affecting thermal 

comfort, such as outdoor temperature, relative humidity, wind 

speed, solar radiation, building orientation, building materials, 

and green coverage. 

(3) Random error term (E): Represents the unexplained part 

of the model, i.e., the difference between the actual observed 

value and the predicted value of the model. 

To explore the relationship between explanatory variables 

(e.g., climate factors, building parameters, etc.) and the 

dependent variable (e.g., thermal comfort index), let the 

dependent variable be represented by T, explanatory variables 

by z1,z2,z3,...,zb, regression coefficients by β0,β1,β2,...,βb, and 

error by γu. This article constructs the following linear 

regression model: 

 

0 1 1 2 2 b b uT z z z    = + + + + +  (1) 

 

The linear regression coefficient fitting method mainly 

minimizes the residual sum of squares to find the regression 

coefficients that make the sum of squared deviations between 

the actual observed values and the predicted values of the 

model the smallest. Specifically, a set of parameters needs to 

be found so that the sum of squared differences between the 

actual values and fitted values of all sample points is 

minimized. This method ensures that the overall deviation 

distance between the fitted values of the linear regression 

equation and the actual observed values is minimized, thereby 

achieving the purpose of prediction and analysis. The 

minimization of residual sum of squares is the deviation 

distance, as follows: 
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By the principle of minimum extremum, taking the partial 

derivatives of FMIN with respect to β0,β1,β2,...,βb, and setting 

them to 0, we have: 
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(3) 

 

β0,β1,β2,...,βb can be obtained by solving the above (b+1)-

element linear equation system. 

In actual research, there may be nonlinear relationships 

between factors affecting thermal comfort. By log-linear 

transformation or logistic transformation, such nonlinear 

relationships can be captured to some extent, thereby 

improving the fitting effect and prediction accuracy of the 

model. Thus, in the context of urban building thermal comfort 

analysis, this article applies log-linear/logistic transformations 

to the basic regression model to generate a logistic regression 

model. The logistic regression model is naturally suitable for 

handling binary classification problems. The output is a 

probability value, representing the probability that a certain 

sample belongs to the "comfort" category, which can be 

directly used to represent classification probability. This 

probability interpretation has higher practical value in many 

applications, helping decision-makers understand the 

probability of thermal comfort in different building 

environments and implement targeted improvement measures. 

The basic expression is as follows: 
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Therefore, to explore the main influencing factors of urban 

building thermal comfort, the primary model evolves into: 

 

𝑂(𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑧𝑜𝑛𝑒) = 𝑅(𝑇 𝑧⁄ ) =
𝑒ℎ(𝑧)

1 + 𝑒ℎ(𝑧)
 (7) 

 

Assuming the logistic function is represented by O(tu=1|zu), 

the logistic transformation is represented by h(z), and 

correspondingly, we have: 
 

𝑂(𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑧𝑜𝑛𝑒)
= 1 − 𝑂(𝑛𝑜𝑛 − 𝑡ℎ𝑒𝑟𝑚𝑎𝑙 𝑐𝑜𝑚𝑓𝑜𝑟𝑡 𝑧𝑜𝑛𝑒)

= 1 − 𝑅(𝑇 𝑧⁄ ) =
1

1 + 𝑒ℎ(𝑧) 
(8) 

 

On the other hand, the occurrence ratio of non-thermal 

comfort situations in urban buildings can be calculated using 

the following formula: 
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The logistic regression model is essentially a probability 

model. Using maximum likelihood estimation, the parameter 

values most likely to generate observed data can be found, 

providing advantages in model prediction and interpretation. 

Compared with other parameter estimation methods, 

maximum likelihood estimation provides more stable and 

reliable coefficient estimation, especially in cases with larger 

sample sizes. The basic form of the likelihood function is as 

follows: 
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Taking the logarithm gives the log-likelihood function: 
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Taking the partial derivatives of M(ϕ) with respect to 

β0,β1,β2,...,βb, and setting them to 0, β0,β1,β2,...,βb can be solved. 

To effectively evaluate the predictive performance of the 

model, guide model optimization, and enhance the credibility 

and acceptance of the study, this article selects the Hosmer-

Lemeshow goodness-of-fit index as the indicator for 

evaluating the goodness-of-fit of the constructed logistic 

regression equation. The Hosmer-Lemeshow test is a group-

based goodness-of-fit test method. By grouping the observed 

values according to the predicted probability and calculating 

the difference between actual observations and predictions 

within each group, the predictive performance of the model in 

different probability ranges can be intuitively evaluated. This 

helps to understand the potential flaws and shortcomings of 

the model when predicting thermal comfort. The statistical 

formula is similar to the Pearson X2(Pearson), assuming the 

sample data is divided into groups according to the predicted 

probability value, and the number of groups is represented by 

H (H≤10), the number of observed values in group h is 

represented by th, the number of samples in group h is 

represented by bh, the predicted probability value is 

represented by �̂�h, and the number of predicted events by bh�̂�h, 

it is expressed as follows: 
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In the context of urban building thermal comfort analysis, 

this article chooses to perform the Wald test on the constructed 

Logistic regression equation. By comparing the ratio of the 

regression coefficient estimates of each explanatory variable 

to their standard error (i.e., the Wald statistic), we can 

determine whether the explanatory variables have a significant 

impact on the dependent variable (thermal comfort). This 

helps to identify the factors with significant impacts on 

thermal comfort. At the same time, we can remove explanatory 

variables that do not have a significant impact on thermal 

comfort from the model to obtain a simpler and more easily 

interpretable model. This helps us to further understand the 

relationships between explanatory variables and their impact 

on thermal comfort. Through the Wald test, we can identify 

explanatory variables with significant impacts on thermal 

comfort, thereby deepening our understanding of the urban 

building thermal comfort analysis scenario. This helps to 

provide a solid basis for formulating corresponding policies 

and intervention measures. The expression for the Wald test is 

given as follows: 
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j
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3. HUMAN THERMAL COMFORT MODEL IN URBAN 

BUILDINGS 
 

The PMV (Predicted Mean Vote) model is a mathematical 

model used to assess human thermal comfort, which integrates 

various environmental factors (such as temperature, humidity, 

wind speed, and radiant temperature) and human 

characteristics (such as metabolic rate and clothing thermal 

resistance). This allows for a more accurate assessment of 

human thermal comfort in specific environments, providing 

strong support for the evaluation and improvement of urban 

building thermal comfort. The PMV model is based on heat 

balance theory, which assesses thermal comfort by balancing 

the heat generated and lost by the human body. Specifically, 

let L represent the human body's metabolism, Q represent the 

work done by the human body, L-Q represent the remaining 

heat of the human body, haj represent the skin, waj represent 

the respiratory tract, A represent the storage value of surplus 

or deficit heat, V represent convective heat exchange, E 

represent radiant heat exchange, RRL represent the total heat 

carried by water vapor, RSR represent latent heat dissipation, 

and VSR represent sensible heat dissipation. The PMV model 

calculates the human thermal comfort index through the 

following formulas: 

 

( ) ( )RL SR RL SR SRL Q w w A V E R V R A− = + + = + + + + +  (14) 

 

( ) ( )RL SR RL SR SRL Q w w A V E R V R− = + + = + + + +  (15) 

 

When the heat balance reaches a stable state, the human 

body feels comfortable. The range of PMV values is from -3 

to +3, representing the human body's comfort evaluation of the 

environment. The closer the PMV value is to 0, the higher the 

thermal comfort. The further the PMV value deviates from 0, 

the lower the thermal comfort. Let γ represent the emissivity 

of the human body surface, δ represent the Stefan-Boltzmann 

constant; the correction factor for the effect of body posture on 

the effective surface area, yRT represent the human body 

surface temperature, and ye represent the mean radiant 

temperature, then: 

 

( )4 4

CL EF CL eE d d Y Y =     −  (16) 

 

Convective heat exchange V is represented as: 

 

( )CL v CLV d g y ys=   −  (17) 

 

Skin evaporation heat dissipation RRL is represented as: 

 

RL DI HYR R R= +  (18) 

 

Skin surface temperature YRL is represented as: 
 

( )35.7 0.0275RLY L Q= −  −  (19) 
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Sweat evaporation heat dissipation RHY is represented as: 

 

( )0.42 58HYR L Q=  − −  (20) 

 

Sensible heat dissipation VSR can be calculated through the 

following formula: 

 

( )0.0014 34SRV L ys=   −  (21) 

 

Latent heat dissipation RSR can be calculated through the 

following formula: 

 

( )0.0173 5.87SRR L os=   −  (22) 
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 (23) 

 

When the human thermal comfort OLC equals 0, not 

everyone is in a satisfactory thermal comfort state. Figure 3 

shows the percentage of dissatisfaction corresponding to the 

human thermal comfort situation. The calculation of the 

percentage of dissatisfaction with the thermal environment 

OOF can be performed through the following formula: 

 

( )4 2100 95exp 0.03353 0.2179OFF OLC OLC = − − +
 

 (24) 

 

 
 

Figure 3. Percentage of dissatisfaction corresponding to 

human thermal comfort situation 

 

Individuals have different perceptions and adaptability to 

thermal comfort, which may be related to factors such as age, 

gender, and health status. Adaptive thermal comfort models 

can account for these individual differences and more 

accurately predict comfort responses. Moreover, people 

gradually adapt to the temperature and humidity conditions of 

a particular climate environment when exposed to it for a long 

time. Adaptive thermal comfort models consider this 

environmental adaptation process, thus providing more 

suitable comfort recommendations under different climate 

conditions. Building adaptive thermal comfort models is of 

great significance in urban building thermal comfort analysis 

scenarios, as the human body is stimulated by the hot and 

humid environment, causing physiological and psychological 

adaptive adjustments. Adaptive thermal comfort models can 

better explain and predict people's comfort responses under 

different environmental conditions, thus providing more 

effective references for architectural design and improvement. 

Assume the adaptive coefficient is represented by η. The 

expression of the adaptive thermal comfort model SOLC is: 

 

( )1

OLC
SOLC

OLC
=

+
 (25) 

 

 

4. FACTORS FOR IMPROVING HUMAN THERMAL 

COMFORT IN URBAN BUILDINGS 

 

Urban building thermal comfort is affected by various 

factors, including air temperature, relative humidity, mean 

radiant temperature, air speed, metabolism, clothing thermal 

resistance, and others. The following are the effects of these 

factors on thermal comfort: In addition to the above factors, 

urban building thermal comfort is also affected by the 

following factors mentioned in the collected sample data: 

(1) Building structure and design: The structure and design 

of a building affect air circulation, heat transfer, and heat 

dissipation. For example, buildings with good daylighting and 

ventilation can improve thermal comfort, while compact, 

enclosed buildings may lead to a stuffy indoor environment. 

(2) Building materials: The thermal conductivity of building 

materials affects indoor temperature distribution and thermal 

comfort. For example, materials with good insulation 

performance can reduce energy consumption, maintain stable 

indoor temperatures, and thus improve thermal comfort. 

(3) Vegetation cover: Surrounding vegetation cover can 

provide shade, reduce outdoor temperatures, and thus affect 

the thermal comfort of buildings. Well-greened areas can 

lower indoor temperatures and improve thermal comfort 

during hot seasons. 

(4) Urban heat island effect: The urban heat island effect 

refers to the generally higher temperatures in urban central 

areas compared to surrounding rural areas. The heat island 

effect can cause indoor temperatures to rise, thereby reducing 

building thermal comfort. Therefore, measures to reduce the 

heat island effect should be considered in urban planning and 

architectural design to improve thermal comfort. 

By comprehensively considering these factors, a more 

comprehensive analysis of the influencing factors of urban 

building thermal comfort can be conducted, providing a strong 

basis for designing and improving urban buildings. 

Assuming air temperature is represented by ys, wind speed 

by C, and indoor black globe temperature by yh, the 

conversion formula for mean radiant temperature is as follows: 

 

( )0.52.4MRy yh C yh ys= + −  (26) 
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5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

 
 

Figure 4. Contributions of different building parameters to 

building thermal comfort 

 

This study selects three actual buildings A, B, and C for 

thermal environment and thermal comfort analysis. Table 1 

shows the basic thermal environment conditions of different 

sample points in different buildings. Through analysis, it can 

be seen that the highest indoor temperature in building B is 

generally higher than that in buildings A and C, which may be 

related to building structure, design, materials, and other 

factors. The highest indoor temperatures of buildings A and C 

are relatively close, but building C has significantly higher 

indoor temperatures at samples 3 and 5. In terms of maximum 

comfort value, lower comfort values indicate better thermal 

comfort. Building A has relatively lower maximum comfort 

values in all samples, indicating better thermal comfort. 

Buildings B and C have higher maximum comfort values, 

especially in samples 1 and 2 of building C. In terms of 

comfort duration, building A generally has higher comfort 

duration, indicating that building A provides a comfortable 

living environment for people for more extended periods. 

Buildings B and C have lower comfort durations, especially in 

samples 4 and 5 of building B, which may require measures to 

improve thermal comfort. In terms of cooling load satisfying 

comfort, building A has relatively low cooling loads in 

samples 1, 4, and 5, indicating that building A has lower 

cooling requirements in these sample points. Buildings B and 

C have higher cooling loads, which may require more energy 

consumption to meet comfort needs. 

Figure 4 shows the contributions of different building 

parameters to building thermal comfort. Based on the 

contribution of different building parameters to building 

thermal comfort in Figure 4, the following analysis can be 

made. First, in terms of building morphology, the value of 

building C is the highest, indicating that the morphology of 

building C has the most significant impact on its thermal 

comfort. In contrast, the values of buildings A and B are lower, 

indicating that the morphology of these two buildings has a 

relatively smaller impact on thermal comfort. Second, in terms 

of building orientation, building C also has the highest value, 

meaning that the orientation of building C has the greatest 

impact on its thermal comfort. Buildings A and B have 

relatively lower values, indicating that their orientation has a 

smaller impact on thermal comfort. For building materials, the 

value of building C is still the highest, indicating that building 

materials have the most significant impact on the thermal 

comfort of building C. Buildings A and B have slightly lower 

values, indicating that their building materials have a relatively 

smaller impact on thermal comfort. In terms of window area 

and distribution, building C has the highest value, indicating 

that window area and distribution have the most significant 

impact on the thermal comfort of building C. Buildings A and 

B have lower values, indicating that window area and 

distribution have a relatively smaller impact on the thermal 

comfort of these two buildings. Finally, in terms of green 

coverage, building C has the highest value, indicating that 

green coverage has the most significant impact on the thermal 

comfort of building C. Buildings A and B have relatively lower 

values, indicating that green coverage has a smaller impact on 

the thermal comfort of these two buildings. In summary, it can 

be concluded that the thermal comfort of building C is most 

affected by building parameters, which means that 

optimization of building C in practical applications will bring 

significant improvements to its thermal comfort. The thermal 

comfort of buildings A and B is relatively less affected by 

building parameters, but it can still be improved by adjusting 

the corresponding parameters. 

Figure 5 shows the regression analysis fitting curve of 

human comfort under different temperature conditions in 

winter for building kitchens and bedrooms. Based on the 

fitting curve, the following curve analysis can be performed. 

As the temperature increases, the human comfort in winter 

buildings gradually increases. This is because in winter, the 

outdoor temperature is lower, and the indoor temperature is 

further from the comfortable temperature. As the indoor 

temperature gradually increases, the heat loss of the human 

body decreases, thereby making the environment more 

comfortable. Therefore, in winter buildings, appropriately 

increasing the indoor temperature can improve human thermal 

comfort. However, it should be noted that excessively high 

indoor temperatures may lead to energy waste and excessive 

consumption, so it is essential to ensure reasonable 

temperature control while maintaining comfort. 

 

 
1) 

 
2) 

 

Figure 5. Human comfort situation in building kitchen and 

bedroom in winter 
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1) 

 
2) 

 

Figure 6. Winter building average thermal sensation voting 

situation 

 

 
 

Figure 7. Temperature variation curves for different samples 

over time 

 

Figure 6 shows the regression analysis fitting curve of the 

average thermal sensation vote value with temperature 

changes in winter buildings. Based on the regression analysis 

fitting curve, the following curve analysis can be performed. 

As the temperature increases, the average thermal sensation 

vote value in winter buildings gradually increases. This 

indicates that in winter, as the indoor temperature gradually 

increases, people feel more comfortable in the indoor thermal 

environment. In winter buildings, due to the low outdoor 

temperature, there is a significant difference between the 

indoor temperature and the comfortable temperature. As the 

indoor temperature increases, the human perception of thermal 

comfort gradually improves, leading to a rise in the average 

thermal sensation vote value. It should be noted that 

moderately increasing the indoor temperature can improve 

human thermal comfort, but excessively high indoor 

temperatures may lead to energy waste and excessive 

consumption. Therefore, while ensuring comfort, it is essential 

to pay attention to the reasonable control of indoor temperature 

to achieve both energy-saving and comfortable goals. 

Figure 7 shows the temperature change values over time for 

different sample points. Based on the temperature change 

values over time for different sample points in Figure 7, the 

following analysis can be made. First, observe the temperature 

change of each sample point. At different time points, the 

temperature of each sample point shows a certain degree of 

fluctuation, which is consistent with the results predicted by 

the urban building thermal comfort analysis method based on 

ArcGIS and building parameters proposed earlier. This 

indicates that our method can effectively capture the 

temperature change characteristics of urban buildings. Second, 

we can find that at the same time point, there are certain 

differences in temperature among different sample points. 

This suggests that the thermal comfort of different buildings 

may be affected by building parameters, building structure, 

materials, and other factors, which are considered in our 

analysis method. Therefore, our method can effectively reflect 

the differences in thermal comfort between different buildings. 

Finally, from the overall trend, the temperature of each sample 

point changes regularly over time, providing a strong basis for 

further optimizing building design and adjusting the indoor 

environment. This also indicates that the urban building 

thermal comfort analysis method based on ArcGIS and 

building parameters proposed in this study has a certain 

validity. In conclusion, combined with the temperature change 

values over time for different sample points in above table and 

the previous Q&A, it can be concluded that the urban building 

thermal comfort analysis method based on ArcGIS and 

building parameters proposed in this study is effective in 

practical applications and can provide strong support for 

optimizing urban building thermal comfort. 

According to the building thermal environment situation 

before and after the implementation of improvement measures 

in Table 2, the following analysis can be conducted. For 

Building A, the indoor maximum temperature slightly 

decreased after optimization, from 32.15°C to 31.62°C. The 

maximum comfort index also increased, from 2.41 to 2.61. 

Meanwhile, the comfortable duration increased from 23.6 to 

26.9, and the cooling load satisfying the comfort requirements 

decreased from 15243.12 KWh/yr to 9142.50 KWh/yr. These 

data indicate that the optimization measures have a certain 

improvement effect on the thermal environment of Building A. 

For Building B, the indoor maximum temperature increased 

after optimization, from 30.26°C to 39.57°C. However, the 

maximum comfort index slightly decreased, from 2.03 to 1.95. 

The comfortable duration increased from 25.69% to 32.14%, 

and the cooling load satisfying the comfort requirements 

decreased from 16523.84 KWh/yr to 9163.48 KWh/yr. 

Although the indoor maximum temperature increased, the 

overall comfort duration and cooling load were improved, 

indicating that the optimization measures had a positive 

impact on the thermal environment of Building B. For 

Building C, the indoor maximum temperature significantly 

decreased after optimization, from 39.52°C to 31.41°C. The 

maximum comfort index decreased from 2.57 to 2.38. The 

comfortable duration remained basically unchanged, slightly 
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increasing from 26.48% to 26.59%, and the cooling load 

satisfying the comfort requirements increased from 12659.41 

KWh/yr to 16253.72 KWh/yr. Although the maximum comfort 

index decreased, the significant decrease in indoor maximum 

temperature indicates that the optimization measures have a 

significant improvement effect on the thermal environment of 

Building C. In summary, after implementing improvement 

measures in building structure and design, building materials, 

and vegetation coverage, the thermal environments of these 

three buildings have been improved. Buildings A and B 

achieved better results in terms of comfort index and cooling 

load, while Building C showed better improvement in 

reducing indoor maximum temperature. Therefore, it can be 

concluded that the improvement measures proposed in this 

study have a certain improvement effect on the thermal 

environment of these three buildings. 

 

Table 1. Basic thermal environment conditions of different sample points in buildings 

 
 Building Sample 1 Sample 2 Sample 3 Sample 4 Sample 5 

Maximum indoor temperature 

A 36.25℃ 34.29℃ 34.15℃ 30.14℃ 36.52℃ 

B 39.42℃ 35.28℃ 39.62℃ 36.95℃ 39.27℃ 

C 33.52℃ 30.61℃ 38.41℃ 31.42℃ 38.15℃ 

Maximum comfort value 

A 2.16 2.06 2.15 2.51 2.05 

B 2.84 2.19 2.49 2.03 2.69 

C 2.95 2.85 2.58 2.17 2.38 

Comfort duration 

A 24.15% 25.61% 20.63% 26.59% 25.37% 

B 29.16% 29.58% 24.51% 22.53% 21.05% 

C 28.47% 27.43% 28.16% 21.24% 26.18% 

Cooling load satisfying comfort (KWh/yr) 

A 16253.15 13528.41 9152.34 9162.35 8152.63 

B 10925.59 16295.57 13524.15 9425.14 9142.27 

C 14251.62 10263.29 16392.48 16253.48 18254.36 

 

Table 2. Basic thermal environment conditions of buildings before and after improvement measures implementation 

 
 Building Before Optimization After Optimization 

Indoor Maximum Temperature 

A 32.15 31.62 

B 30.26 39.57 

C 39.52 31.41 

Maximum Comfort Value 

A 2.41 2.61 

B 2.03 1.95 

C 2.57 2.38 

Comfort Duration 

A 23.6 26.9 

B 25.69% 32.14% 

C 26.48% 26.59% 

Cooling Load that Meets Comfort 

(KWh/yr) 

A 15243.12 9142.50 

B 16523.84 9163.48 

C 12659.41 16253.72 

 

 

5. CONCLUSION 

 

This study conducted a study on urban building thermal 

comfort improvement measures based on ArcGIS and building 

parameters. The classification of sample data needed for urban 

building thermal comfort research was presented, combining 

logistic regression with ArcGIS spatial statistics and spatial 

analysis to explore the influencing factors of urban building 

thermal comfort from different perspectives, thus improving 

the comprehensiveness and depth of the research. An urban 

building human thermal comfort model was constructed, and 

the construction principle of the adaptive thermal comfort 

model was provided. The actual buildings A, B, and C were 

selected for thermal environment and thermal comfort analysis 

in combination with examples. The contribution of different 

building parameters to building thermal comfort was presented, 

and the regression analysis fitting curves of human comfort 

index with temperature changes and the average thermal 

sensation vote with temperature changes were provided. The 

temperature changes with time under different sample points 

were analyzed, and the analysis conclusions were drawn. The 

effectiveness of the urban building thermal comfort analysis 

method based on ArcGIS and building parameters proposed in 

this study was verified in practical applications, providing 

strong support for optimizing urban building thermal comfort. 

Finally, a comparative analysis of the building thermal 

environment before and after the implementation of 

improvement measures was conducted. It can be concluded 

that the improvement measures proposed in this study have a 

certain improvement effect on the thermal environment of 

these three buildings. 
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