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In order to improve the speech quality in communication systems, acoustic echo cancellation 

techniques are commonly used to mitigate the deleterious effect of acoustic feedback. In 

fact, double-talk situations hinder the performance of acoustic echo cancellation when the 

two speakers in the two ends talk simultaneously. For this reason, double-talk detection is 

included to control the echo canceler system. In this paper we proposed a new method of 

double-talk detection based on the error signal variance. Opposed to the previous works 

where the most of the existing methods are based on a comparison between the received far-

end and the microphone observation signals, we accurately account for the variation of the 

error signal. To evaluate the proposed method, we used acoustic echo cancellation based on 

the normalized least mean square algorithm. Simulation results indicate the good 

performance of the proposed double-talk detector. 
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1. INTRODUCTION

Acoustic echo cancellation (AEC) is a technique used to 

remove acoustic echo in communication systems when the 

presence of the undesirable feedback impairs significantly the 

voice quality especially with hands-free terminals. A major 

source of this echo is the acoustic coupling between the 

loudspeaker and the microphone at each end [1]. Since the 

1960s, acoustic echo cancellation problem has attracted 

attention of many researchers in several applications, e.g., 

teleconferencing, car hands-free telephones, mobile phones, 

voice over internet protocol (VoIP), etc. [2]. In fact, AEC 

eventually has been understood as an application of adaptive 

filtering. Herein, the adaptive cancellation is done by 

estimating the acoustic echo path impulse response using an 

adaptive finite impulse response (FIR) filter and subtracting 

the echo estimate from the microphone signal.  

In addition, adaptive algorithms are used for updating the 

FIR filter coefficients where the most frequently used are the 

gradient based normalized least mean squares (NLMS), the 

affine projection algorithm (APA), the recursive least squares 

(RLS) and frequency domain adaptive filters (FDAF) [3]. 

Undoubtedly, divergence risks of the adaptive filter 

coefficients may arise during the so-called double-talk (DT) 

periods, in which both near-end and far-end speakers talk at 

the same time [4, 5]. In another words, the presence of near-

end signal makes a change in the desired signal (echo signal) 

that produce disturbance in the AEC process.  

The main role of double-talk detection (DTD) is to prevent 

the divergence of the adaptive filter coefficients by halting the 

update during double-talk periods. In this manner, these 

coefficients maintain the convergence state in DT periods. On 

the other hand, pending the absence of the near-end signal the 

filter coefficients continue the convergence towards their 

optimal values. Many studies have been conducted in DTD 

with the goal of improving the AEC process, particularly in 

DT scenarios. Most of the proposed methods have focused on 

determining a similarity measure between the near-end and 

far-end speech signals. For instance, amplitude comparison is 

based in the well-known Geigel algorithm [6], also its 

generalized version is considered in the Holder inequality 

method [7]. Furthermore, cross-correlation (CC) [8, 9], signal 

envelope [10], coherence [11], and voice activity detection 

(VAD) [12] similarities are investigated for DTD. The main 

problem of these methods is the sensitivity to the background 

noise signal. In addition, frequency-domain methods have 

been used for DTD, based on a Gaussian mixture models 

(GMM) [13], spectral analysis [14], spectral slit [15] and time-

frequency presentation by Stockwell transform [16]. Also, an 

audio watermarking technique is investigated in the study of 

Szwoch et al. [17], multimodal information (sound and image) 

is exploited in the study of Urakami and Kajikawa [18] and 

auxiliary adaptive filter is used in the study of Hamidia and 

Amrouche [19]. Nevertheless, most of these methods of DTD 

require a high computational complexity which cannot be 

apply in the practical applications. 

Differently to previous works which based on similarities 

comparison between the near-end and the microphone signals, 

we propose in this paper a new method of DTD using only the 

variance of the error signal that considers DTD in this case as 

a change detection problem. 

The rest of this paper is organized as follow. Section 2 

introduces the AEC problem with the theoretical formulation. 

In Section 3, the proposed method of DTD is described. 

Simulation results are presented in Section 4. Finally, Section 

5 concludes the paper.
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2. ACOUSTIC ECHO CANCELLATION 

 

2.1 Single-talk scenario 

 

In communication systems, acoustic echo occurs when the 

loudspeakers are picked-up by the microphone in the terminal 

device. Acoustic echo cancellation is use to remove this 

undesirable feedback signal; this issue is classified as a system 

identification problem. The basic principle of AEC is to 

generate a replica �̂�(𝑛)  of the actual echo signal y(n) and 

subtract it from the microphone signal d(n), as is illustrated in 

Figure 1. In another words, an adaptive filter is used to identify 

an unknown system, i.e., the acoustic echo path h which is 

modeled by the impulse response of the loudspeaker-

enclosure-microphones (LEM). In the first case, we consider 

the single-talk scenario, when the near-end speaker is in the 

silence-state. 

 

 
 

Figure 1. Illustration of AEC system 

 

The acoustic echo signal y(n) at the discrete-time index n is 

the filter resulting of the near-end signal x(n) through the room 

impulse response h as is modeled by the following equation: 

 

𝑦(𝑛) = 𝐱𝑇(𝑛) 𝐡 (1) 

 

where, h=[h0, h1, …, hL-1]T is the echo path of the length L, the 

superscript (∙)T denotes transpose of a vector, x(n)=[x(n), x(n-

1), …, x(n-L+1)]T is a vector containing the 𝐿 most recent time 

samples of the received signal x(n), or the far-end signal. 

The microphone signal d(n) includes the echo signal y(n) 

and the background noise signal b(n) as: 

 

𝑑(𝑛) = 𝑦(𝑛) + 𝑏(𝑛) (2) 

 

The estimated echo signal �̂�(𝑛) generated by the adaptive 

filter, which is a linear combination of several inputs at time n. 

This copy version of echo is subtracted from the microphone 

signal and it is given by: 

 

�̂�(𝑛) = 𝐱𝑇(𝑛) 𝐰(𝑛) (3) 

 

where,  𝐰(𝑛) = [𝑤0(𝑛) 𝑤1(𝑛), … , 𝑤𝐿−1(𝑛)]𝑇  is the weight 

vector of the adaptive filter. The length of the adaptive filter is 

generally equal to the length of the acoustic echo path h. 

The error signal e(n) at time n is given by: 

 

𝑒(𝑛) = 𝑑(𝑛) − �̂�(𝑛) (4) 

 

Several adaptive filtering algorithms are proposed to adapt 

the weights w(n) of the filter using the feedback of the 

estimation error. The ideal algorithms should have a speed 

convergence rate and good tracking capabilities but achieving 

low misalignment. One of the most used due to its stability and 

low complexity is the normalized least mean squares (NLMS) 

algorithm [20]. It is defined by the following update equation: 

 

𝐰(𝑛 + 1) = 𝐰(𝑛) +
𝜇

𝐱𝑇(𝑛) 𝐱(𝑛) + 𝜀
𝑒(𝑛)𝐱(𝑛) (5) 

 

where, w(n+1) is the next tap weight value and w(n) is the 

present tap weight value of the adaptive filter. μ is the step-

size parameter used in the weight vector updating with 0<μ<2 

for the stability considerations, and ε>0 is a regularization 

constant used to improve adaptation stability and to avoid 

division by zero. 

 

2.2 Double-talk scenario 

 

In this scenario, the near-end speaker is in the speech-state 

and the DT situation is occurred when the echo signal y(n) and 

the near-end signal s(n) appear simultaneously. This situation 

causes a quick divergence of the adaptive filter coefficients 

w(n) from their optimum values where the microphone signal 

d(n) in this case combines the echo y(n), the near-end s(n) and 

background noise b(n) signals. This combination affects the 

comparison with the estimated echo signal �̂�(𝑛)  in the 

adaptive cancellation where a better process requires that the 

microphone observation contains only the echo signal y(n). 

For this raison, DTD is use for controlling the update of the 

filter coefficients as is shown in Figure 2. In essence, the main 

goal of DTD is to detect the presence of the near-end speech 

and freeze the adaptation process in DT situations [21]. 

 

 
 

Figure 2. Representation of AEC with conventional DTD 

 

Typically, the DTD calculates a statistic decision ξ(n), and 

the DT is declared when ξ(n) is lower than the threshold value 

T. The optimum decision variable ξ(n) for DTD will behave as 

follows [19]: 

 

{
If  𝑠(𝑛) = 0 (double − talk is not present), 𝜉(𝑛) ≥ 𝑇.

If  𝑠(𝑛) ≠ 0 (double − talk is present), 𝜉(𝑛) < 𝑇.       
 

 

The control of the adaptive filter by DTD is defined as: 

 

Control = {
𝜉(𝑛) ≥ 𝑇,   DTD = 0  adaptation         𝜇 ≠ 0

 𝜉(𝑛) < 𝑇,   DTD = 1  no  adaptation  𝜇 = 0
} 

 

where, the update of the adaptive filter coefficients will be 

stopped during DT situations (μ=0), that means w(n+1)=w(n) 

according to Eq. (5). 
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The well-known method of DTD is the Geigel algorithm [7], 

where the variable statistic decision ξG(n) of the latter is 

defined as follows: 

𝜉𝐺(𝑛)

=
max[|𝑥(𝑛)|  |𝑥(𝑛 − 1)|, … , |𝑥(𝑛 − 𝐿 + 1)|]

|𝑑(𝑛)|

(6) 

where, max [. ] and |. | denote the maximum and the absolute 

value, respectively. 

3. PROPOSED METHOD OF DTD

In this paper, we propose a new method of DTD based on 

the variance of the error signal. As is known to all, most of the 

existing methods of DTD based on similarity comparison 

between the microphone signal d(n) and the received far-end 

signal x(n).  

In the proposed method, we focus only on the variation of 

the error signal e(n) for detecting DT periods. For this reason, 

let us assume a frame f of M recent sample history of the error 

signal which is defined as: 

𝐞𝑴(𝑛) = [𝑒(𝑛)  𝑒(𝑛 − 1), … , 𝑒(𝑛 − 𝑀 + 1)]𝑇 (7) 

where, M≤L. 

This frame is used for sensing the DT periods where we 

exploit the change i.e., variance of the error signal to detect the 

activity of near-end signal from the error signal by calculating 

the decision variable as follow: 

𝜉𝑉(𝑛) = 1 − |max[|𝐞𝑴(𝑛)|] − var[𝐞𝑴(𝑛)]| (8) 

where, max[. ] and var[. ] are the maximum and the variance 

of the frame f, respectively.  

Double-talk is declared (DTD=1) if ξV(n)<TV, where TV is a 

constant threshold. 

To avoid a false alarm declaration, especially in the 

beginning of the adaptive filtering process when the energy of 

the error signal is high, we combine the proposed DTD with 

the structure of AEC proposed in our previous work [22]. 

Figure 3 shows the structure of the proposed DTD, the main 

objective behind this structure is to accelerate the convergence 

speed of the adaptive filtering algorithm and reduce the steady-

state error. Its principle based on a superposition of a short 

ineffective stationary segment of additive white Gaussian 

noise (AWGN) in the beginning of the received far-end speech 

signal. 

Figure 3. Structure of the proposed DTD 

The added block in this new structure of acoustic echo 

cancellation system is considered as a pre-processing block 

which accelerates the convergence speed and facilitates the 

double-talk detection process. This block is composed of three 

principal sub-blocks as: 

(a) The voice activity detection (VAD) sub-block which is

used for detecting the presence of the far-end speech signal x(n) 

and triggering the next sub-blocks, the activity of the far-end 

speech signal is declared as follow: 

VAD = {
0,    if  𝑥(𝑛) is absent    (No)

1,    if  𝑥(𝑛) is present  (Yes)
(9) 

(b) The delay sub-block is considered for creating a short

delay period td in the received far-end signal x(n) if the far-end 

speaker is active.  

(c) The role of the AWGN generator is to produce a short

stationary segment of additive white Gaussian noise nσ(n) in 

the generated delay period with a zero mean and ineffective 

values of variance σ compared to the near-end speech signal 

energy. This step can accelerate the convergence process of 

the adaptive filtering and help the learning of their coefficients. 

The resulting near-end speech signal xm(n) from the new 

structure is defined as follow: 

𝑥𝑚(𝑛) = {
𝑥(𝑛),                  if   VAD = 0

𝑛𝜎(𝑛) + 𝑥(𝑛),   if   VAD = 1
(10) 

4. EXPIREMENT AND RESULTS

This section presents the experimental tests with the 

evaluation to prove the effectiveness of our proposed DTD 

method. We used AEC based on NLMS algorithm controlled 

by the step-size μ=0.9 and ε=2.2204×10-16 where the length of 

the adaptive filter is L=1024 equals to the length of the 

acoustic echo path (car cockpit impulse response sampled at 

16 kHz) [22]. We use also speech signals for simulating the 

far-end and the near-end speakers which are sampled at 16 

kHz. Furthermore, we adopted the proposed structure in [22] 

which investigates insignificant samples of the received far-

end signal by creating a delay and adding a short period time 

of the AWGN. We take a period of delay td=125 ms with 

σ2=0.005 is the variance value of AWGN. 

In order to further demonstrate the performance of the 

proposed DTD we compare it with Geigel [6], normalized 

cross-correlation (NCC) [9] methods and zero-crossing rate 

(ZCR) method based DTD proposed in the study [4]. 

The optimal threshold values are given by: TG=1.5, 

TNCC=0.92, TZCR=0.25 and TV=0.96 of Geigel, NCC, ZCR and 

the proposed DTD, respectively. Also, we choice M=512 the 

length of the frame f contents 512 recent sample history of the 

signals in ZCR and the proposed DTD.  

The real environment is modeled by a white Gaussian back-

ground noise signal b(n) that is added to the echo signal y(n) 

at various signal-to-noise ratio (SNR) values, where the SNR 

value is defined by: 

SNR (dB) = 10 log10 (
𝐸{|𝑦(𝑛)|2}

𝐸{|𝑏(𝑛)|2}
) (11) 
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We evaluated our method by calculating the different 

probabilities Pd, Pm and Pf of detection, miss and false alarm, 

respectively, where the output DTD signal is compared with 

the VAD of near-end signal s(n). Also, we have used three 

performances measures: the normalized mean square 

deviation (NMSD) (mismatch system), mean square error 

(MSE) and echo return loss enhancement (ERLE) which are 

calculated by: 

NMSD (dB) = 10 log10 (
‖𝐰(𝑛) − 𝐡‖2

‖𝐡‖2
) (12) 

where, ‖𝐰(𝑛) − 𝐡‖  is the Euclidian distance between the 

adaptive coefficients vector and the true echo path vector. 

MSE (dB) = 10 log10(𝐸{|𝑒(𝑛)|2}) (13) 

where, 𝐸{·} denotes the mathematical expectation. 

ERLE (dB) = 10 log10 {
𝐸[|𝑦(𝑛)|2]

𝐸[|𝑒(𝑛)|2]
} (14) 

Good performance of AEC system is indicated by the 

capability to minimize the misalignment, the MSE and 

maximize the ERLE values. 

Figures 4 and 5 illustrate the decision variable and the DTD 

signal of the proposed method using echo with 2.5s duration 

and near-end speech signals pronounced in English and 

background noise modeled by SNR value equals to 60 dB. 

Figure 4. Decision variable of the proposed DTD 

Figure 5. Representation of the proposed DTD decision 

In addition, temporal evolutions and spectrograms of the 

near-end and the output signals are depicted in Figures 6 and 

7. The obtained results indicate a great similarity between the

near-end and the output signals temporal evolution, also as

well as in their spectrograms.

Figure 6. Temporal evolution of speech signals, (blue) near-

end, (red) output 

Figure 7. Spectrograms of speech signals, (a) microphone, 

(b) near-end, (c) output

To confirm effectiveness of the proposed DTD, we include 

long speech signals pronounced in French in DT scenario with 

duration of 30 seconds. The near-end speech (double-talk) 

appears between times 10 and 16.5 seconds. 

Similarly to the previous tests, consider Figures 8, 9 and 10, 

which depict DTD signal and comparison of the near-end and 

the output (estimated near-end) signals, it is clear that the 

proposed method also has good performance in terms of echo 

cancellation for a long duration of speech conversation. 

Figure 8. Representation of the proposed DTD decision for 

long speech signals, SNR=60 dB 

A comparison between the proposed DTD, Geigel, NCC 

and ZCR methods is shown in Figures 11 and 12 using NMSD 

curves for short and long speech signals. According to the 

obtained results, the proposed method outperforms the other 

methods in terms of minimizing the steady-state NMSD where 

the proposed DTD maintains the NMSD level during DT 

period and avoids NMSD divergence. In other words, the 

proposed DTD allows the NLMS algorithm to ignore the effect 

of the near-end signal on NMSD convergence, such as its 
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NMSD curves bring closer to the single-talk (ST) curves i.e., 

absence of the near-end signal. 

On the contrary, the presence of DT affects the Geigel, NCC 

and ZCR behaviours as well as an increase in the NMSD level. 

Figure 9. Temporal evolution for long speech signals, (blue) 

near-end, (red) output 

Figure 10. Spectrograms of long speech signals, (a) 

microphone, (b) near-end, (c) output 

Figure 11. NMSD curves for short speech signals, SNR=60 

dB, the near-end speech (double-talk) appears between times 

0.625 and 1.76 seconds 

Figure 12. NMSD curves for long speech signals, SNR=60 

dB, the near-end speech (double-talk) appears between times 

10 and 16.5 seconds 

MSE curves are shown in Figure 13, which are evaluated 

for each 2048 iterations. It is observed that the proposed 

method of DTD yields better performance in terms of MSE 

minimizing compared to the others methods. This result 

indicates a reduction in the error signal (returned echo) energy 

during the ST periods. 

Figure 13. MSE evaluation for long speech signals, SNR=60 

dB 

According to the ERLE comparison of DTD methods in 

different SNR values (15 dB, 35 dB and 55 dB) given in Table 

1, the obtained results confirm the superiority of the proposed 

method of DTD compared to the others methods which has 

large values of ERLE average that can reduce the effect of the 

acoustic echo. 

Table 1. Evaluation of ERLE in function of SNR for 

different methods of DTD 

SNR (dB) Method 
ERLE (dB) 

Min Max Mean 

55 

Geigel [6] −10.63 31.37 10.79 

ZCR [4] −17.62 34.59 8.45 

NCC [9] −14.03 35.65 15.25 

Proposed −2.38 40.87 16.83 

35 

Geigel [6] −13.37 19.59 5.13 

ZCR [4] −23.09 23.51 1.45 

NCC [9] −13.87 18.07 3.75 

Proposed −23.74 23.06 8.16 

15 

Geigel [6] −9.21 10.43 0.27 

ZCR [4] −14.20 10.93 0.47 

NCC [9] −13.35 6.43 0.21 

Proposed −14.07 10.31 1.48 

Table 2. Evaluation of PESQ in function of SNR for 

different methods of DTD 

SNR (dB) Method PESQ 

55 

Geigel [6] 0.75 

ZCR [4] 2.23 

NCC [9] 2.23 

Proposed 3.31 

35 

Geigel [6] 1.09 

ZCR [4] 1.58 

NCC [9] 1.51 

Proposed 2.01 

15 

Geigel [6] 0.57 

ZCR [4] 0.88 

NCC [9] 0.61 

Proposed 1.48 

A perceptual evaluation of speech quality (PESQ) [23] is 

also considered to evaluate the quality of the output speech 
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signal of each method of DTD as is depicted in Table 2. The 

values of PESQ are ranging from 4.5 (the highest possible 

quality) to 0 (the worst quality) where the output signal i, e., 

the estimated near-end signal is compared with the original 

near-end signal. 

From the obtained results, we can observe that the proposed 

method has better performance in terms of the speech 

intelligibility. 

Table 3 presents the obtained probabilities (Pd, Pm and Pf) 

of the different DTD methods utilizing several tests of speech 

signals for near-end and far-end speakers, under three SNR 

levels (15, 35 and 55 dB). It is worth noting that, the goal is to 

maximize the detection probability Pd and minimize the miss 

probability Pm for better detection of DT. On the other side, 

for avoiding the update stopping during the convergence 

process the false alarm probability Pf should be minimized. 

The obtained results evince that the proposed DTD yields 

lower values of Pm and Pf, also higher value of Pd for the three 

levels of SNR compared to the others methods. We indicate 

that the increasing on Pf value causes convergence halting of 

the NLMS algorithm. We can therefore conclude that the 

proposed DTD performs better in terms of probabilities 

evaluation. 

Table 3. Comparison of probabilities in function of SNR for 

different methods of DTD 

SNR (dB) Method Pd Pm Pf 

55 

Geigel [6] 0.52 0.48 0.25 

ZCR [4] 0.81 0.19 0.27 

NCC [9] 0.92 0.08 0.22 

Proposed 0.99 0.01 0.21 

35 

Geigel [6] 0.52 0.48 0.31 

ZCR [4] 0.74 0.26 0.28 

NCC [9] 0.81 0.19 0.37 

Proposed 0.90 0.10 0.25 

15 

Geigel [6] 0.52 0.48 0.43 

ZCR [4] 0.70 0.30 0.38 

NCC [9] 0.80 0.20 0.59 

Proposed 0.88 0.12 0.18 

5. CONCLUSION

In this paper, we have proposed a new fast double-talk 

detector that uses the error signal’s variance to detect the 

presence of near-end signal. As opposed to the existing 

principle based on comparison between far-end and 

microphone signals, the key idea behind this work is to focus 

only on the error signal to declare DT situations.  

We have carried out a comparison between Geigel, NCC, 

ZCR methods and the proposed DTD to show clearly the 

performance of this latter for acoustic echo cancellation in 

double-talk scenario. From the obtained results, we can be 

concluded that the proposed DTD performs better in terms of 

near-end signal detection and AEC controlling. In addition, 

this method is simple and it has low computational complexity. 

In the future we intend to study the effect of echo path change 

on the performance of the double-talk detector with the use of 

robust adaptive filtering algorithms to enhance DTD in low 

level of SNR. Also, we will investigate a dynamique 

thresolding in the DT decision for providing better 

performance. 
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