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Premature ventricular contraction (PVC) is among the most prevalent forms of arrhythmia 

diagnosed in clinical settings. Arrhythmias can be recognised by analysing the ECG signal. 

However, it takes a lot of time for cardiologists to analyse these long-term ECG signals. The 

fast and accurate identification of PVCs is crucial in the treatment of cardiac diseases Here; 

we propose a simple and promising method for detecting PVCs in long-term ECG signals. 

The method is based on Chebyshev polynomial coefficients and the k-nearest neighbour 

(KNN) classifier. The proposed approach has been experienced on the MIT-BIH Arrhythmia 

Database and the results of the experiments indicate high levels of accuracy, sensitivity, and 

specificity, with a 99.35% accuracy rate, 99.86% sensitivity rate, and 85.11% specificity 

rate. The results are highly pleasing, taking into account the straightforwardness of the 

classification system. It is possible that the suggested approach to classification could serve 

as an effective means of diagnosing arrhythmias. 
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1. INTRODUCTION

Ventricular ectopic beats, also known as premature 

ventricular contractions (PVCs), happen prior to the normal 

sinus rhythm (NSR) [1]. An early beat featuring an abnormal 

QRS complex, and lacking a preceding P wave, is a 

distinguishing feature of PVCs [2]. This pattern can be random 

or occur at definite intervals. This topic is very interesting 

since PVCs are early indicators of cardiac depolarisation 

issues, and can sometimes predict harmful arrhythmias. 

Researchers in analysing and classifying ECG signals often 

use algorithms and techniques to simulate the thinking of a 

cardiology expert. ECG modelling has a wide range of 

applications, including signal compression, noise filtering, and 

feature extraction for arrhythmia classification.  

Many studies have focused on ECG signal modelling, 

including those using sequential Bayesian methods [3], 

extended Kalman filter [4], and segment dictionary and Bezier 

curve approximation [5]. In the same context, Baali et al. [6] 

proposed a new technique for electrocardiogram (ECG) signal 

analysis. The authors propose a parametric modelling 

approach that maps ECG heartbeats into the singular value 

domain using a linear predictive coding (LPC) filter. ECG 

signals have also been modelled as a sum of Hermite or 

Gaussian functions due to their similarities with the QRS 

complex. Various techniques have been put forth, such as, 

Laguna et al.’s Adaptive Hermite Model Estimation System 

(AHMES) [7], Lagerholm et al.’s method of decomposing the 

QRS complex into Hermite basis functions [8]. Clifford and 

Villarroel use of Gaussian functions to model ECG signals [9], 

and Nunes and Nait-Ali approach of approximating QRS 

complex waves through the Hilbert transform and low-order 

polynomial approximation [10]. While Chebyshev 

polynomials are commonly used in spectral methods and 

mathematical interpolation, but their application to ECG 

modelling is rarely found in the literature [11, 12]. 

ECG classification is a difficult task due to the significant 

variations in ECG signals for different patients. In recent years, 

several algorithms for ECG classification, heartbeat detection, 

and diagnosis have been proposed [13-16]. The 

PhysioNet/CINC 2020 and 2021 Challenges [17, 18] provide 

an opportunity to discuss the complexities of ECG 

classification from several perspectives and the impact of 

analysing large numbers of leads. Algorithms for ECG 

classification can be divided into two groups: morphology-

based methods [1, 13-15, 19-23] and deep learning-based 

methods [16, 24-30]. 

Morphology-based methods use the shape of the ECG 

waveform to classify heartbeats, including neural networks 

with selected features [13], fuzzy expert systems [14, 15]. 

These methods achieve high accuracy in recognising PVC 

arrhythmias and different heart rhythms. Rizal et al. employed 

a technique based on multilevel wavelet entropy to 

differentiate premature ventricular contraction (PVC) beats 

[19]. Jenny et al. [1] utilised Independent Component Analysis 

(ICA) to extract features, which is one of the most reliable 

techniques in this domain and is based on the assumption that 

most measured signals must be mixtures of independent 

signals. Dong et al. [20] proposed a wavelet transform and a 

support vector machine (SVM) algorithm for classifying 

PVCs. De Oliveira et al. [21] suggested a PVC detection 

method that involves extracting a simplified set of features 

based on geometric shapes of QRS complexes in ECG signals. 

Talbi and Ravier [22] used fractional linear prediction for PVC 

recognition. Xie et al. [23] suggested a PVC detection method 

that combines features and a random forest algorithm. 

While morphological-based techniques have produced 

favorable outcomes, they possess certain drawbacks like 
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dependency on ECG technical expertise and inconsistency in 

feature extraction. 

Conversely, the use of deep learning has been prevalent in 

identifying PVCs in ECG signals and several investigations 

have demonstrated various deep learning approaches. An 

example of this is the use of one-dimensional convolutional 

neural networks (CNNs) for feature extraction and the 

identification of PVCs via supervised learning [16]. Yu et al. 

[24] used deep metric learning and a k-nearest neighbours

(KNN) classifier to detect PVCs in long-term ECG signals,

while Zhou et al. [25] employed a recurrent neural network

featuring long short-term memory to identify PVCs in ECG

signals. In another study, Zhao et al. [26] integrated the

modified frequency slice wavelet transform (MFSWT) with

CNN for the detection of PVCs. Li et al. [27] created a method

for detecting ventricular ectopic beats (VEBs) using a

combination of three types of ECG wavelet transforms and

CNN. Hoang et al. [28] combined wavelet fusion and Tucker-

decomposition with a CNN classifier to detect PVCs using

multiple ECG combinations from 12-lead ECGs applied to

wearable devices. Liu et al. [29] created a deep learning

program to identify PVCs in children’s ECG. The model

incorporates both the tuned inception V3 model with 2D

waveform data and the 1D CNN model with time-series data,

resulting in effective detection of PVCs and the ability to

automatically extract and identify ECG features. Gordon and

Williams [30] used autoencoder architecture based on

convolutional layers to extract and select features, and a

random forest classifier to discriminate PVC beats

automatically. Al Rahhal et al. [31] employed stacked

denoising autoencoder (SDA) and DNN classifiers to identify

PVCs from multilead ECG signals.

However, the deep learning approach has some limitations 

compared to manual feature engineering. The computational 

complexity of deep learning methods is higher, and the 

features extracted by the system lack clear and unambiguous 

physical or medical meaning. Furthermore, there is no 

guarantee that training on different ECG data will produce 

homogeneous features, meaning retraining the convolutional 

autoencoder would also require retraining the final classifier 

[30]. The effectiveness of PVC detection methods based on 

deep learning is slightly lower compared to those using manual 

feature engineering [28, 29]. 

According to the literature, a majority of the approaches 

have a restricted rate of success, and certain methods are 

overly complicated for practical use. Additionally, some use 

high-dimensional features that are challenging to visualise and 

understand, and may not provide enough discrimination for 

detecting PVC heartbeats. 

The purpose of this research is to assess the efficacy of 

Chebyshev polynomials in ECG signal modelling and 

demonstrate the usefulness of the derived coefficients in 

classifying PVC arrhythmias. 

Specifically, the proposed method introduced the 

Chebyshev polynomial transform into PVC detection for the 

first time, although the interpretation of the polynomial 

coefficients could potentially correlate with specific medical 

conditions, thus creating a fresh challenge for automatic 

diagnosis and PVC detection. This is the reason why this 

article put forth a fresh strategy that employs Chebyshev 

polynomial transforms and the k-nearest neighbour (KNN) 

classifier to differentiate premature ventricular contraction 

(PVC) arrhythmias. To address this, tests are performed using 

electrocardiogram signals obtained from the MIT-BIH 

Arrhythmia Database. 

2. MATERIALS AND METHODS

The paper introduces an innovative approach to improve the 

ECG heartbeat classification results. The focus of this method 

is to distinguish between premature ventricular contractions 

(PVC) and normal heartbeats, using Chebyshev polynomial 

coefficients as features and a k-nearest neighbour (KNN) 

classifier. The technique is comprised of four stages: pre-

processing, modelling, feature extraction, and automatic 

classification. All of these steps are depicted in Figure 1. 

Figure 1. Block diagram of the suggested ECG heartbeat classification system 

2.1 ECG signals pre-processing 

The ECG records are susceptible to interference and noise 

caused by skin electrodes. To address this, pre-processing is 

done to eliminate noise with a low and high frequency. This is 

achieved through a band pass filter that includes: (1) a moving 

average to remove power-line interference, (2) a low-pass 

filter to suppress electromyography noise, and (3) a high-pass 

recursive filter for drift elimination. 

2.2 Modelling and feature extraction 

In this work, we use the first type of Chebyshev 

polynomials, which are characterised by the subsequent 
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recurrence relation in the interval [−1, 1]: 
 

Tn+1(x) = 2x Tn(x) − Tn−1(x)   for n ≥ 1 (1) 

 

where, T0(x) = 1 and T1(x) = x. 

In the interval [−1, 1] , they constitute a complete 

orthogonal set with respect to the weighting function w(x) =

1/√(1 − x2) . Additionally, they also satisfy a discrete 

orthogonal relation, which states that if xk (k = 1, 2, … , m) 

are the m zeros of Tm(x), and if i, j < 𝑚, then: 

 

∑ Ti(xk)Tj(xk) = {

0 if i ≠ j
m/2 if i = j ≠ 0
m if i = j = 0

m

k=1

 (2) 

 

The definition of the Chebyshev polynomials in 

trigonometric form is expressed as: 

 

Tn(x) = cos (n cos−1(x)) (3) 

 

The roots of the Chebyshev polynomials of the first type, 

which are commonly known as the Chebyshev nodes, are 

obtained from Eq. (3) as Tn(xj) = cos(arccos(xj)) = 0 , 

indicating that: 

 

xj = cos (π
2j − 1

2n
) , 1 ≤ j ≤ n (4) 

 

In [−1, 1], Tn(x) has exactly n unique zeros. These nodes 

are particularly useful in numerical analysis, as they are used 

to construct the Chebyshev-Gauss-Lobatto quadrature rule. 

The extreme of Tn(x)  are also resulting from Eq. (3) as 

Tn(yj) = cos(arccos(yj)) = ±1 , where yj  are the roots of 

Tn(x), thus: 

 

yj = cos (π
j

n
) , 1 ≤ j ≤ n (5) 

 

As a result, it is feasible to represent the signal s(t) in the 

form of a Chebyshev polynomial series as follows: 

 

s(t) = ∑ ck Tk(t)

n

k=0

 (6) 

 

The coefficients ck are calculated as follows: 

 

ck =
〈s, Tk〉

〈Tk, Tk〉
=

1

dk
2 ∫

s(t)Tk(t)

√1 − t2
dt

1

−1

 (7) 

 

where, dk
2 = {

π if k = 0
π 2⁄ if  k ≥ 1

 

Applying the Gauss-Lobatto integration method [32] on 

Chebyshev polynomials: 

 

∫
s(t)Tk(t)

√1 − t2
dt =

π

n
∑ s(xj)Tk(xj)

n

j=1

1

−1

 (8) 

 

where, xj are the roots of Tn(t). All Christoffel numbers are 

equal to π 2⁄ . 

To calculate ck in Eq. (7), we use the zeros of Tn+1: 

 

ck

=
2

n + 1
∑ s(xj)cos (

k(2j − 1)π

2(n + 1)
)

n+1

j=1

=
2

n + 1
∑ s (cos (

k(2j − 1)

2(n + 1)
))

n+1

j=1

cos (
k(2j − 1)π

2(n + 1)
) 

(9) 

 

for 1 ≤ k ≤ n and 

 

c0 =
1

n + 1
∑ s(xj)

n+1

j=1

=
1

n + 1
∑ s (cos (

π(2j − 1)

2(n + 1)
))

n+1

j=1

 (10) 

 

During the initial stage of decomposition, the ECG signal is 

initially split into blocks, and each block is then transposed 

into the Chebyshev polynomial domain [−1, 1] as follows: 

 

x = −1 +
2

tB

 (11) 

 

where, tB is the duration of the signal segment. 

The trigonometric form of the Chebyshev polynomials 

simplifies coefficient computation. A detailed description of 

the signal decomposition through Chebyshev polynomials 

series can be found in the study [11]. 

The next stage is the modelling mechanism that 

encompasses the determination of polynomial coefficients 

corresponding to every signal segment. The last stage is signal 

reconstruction, which includes signal synthesis and block 

assembly. 

We use the percentage of the root mean square difference 

(PRD) to assess the model’s quality as follows: 

 

PRD = 100√
∑ (sn − ŝn)2

n

∑ sn
2

n

 (12) 

 

where, s(n) represents the initial signal and ŝ(n) represents 

the reconstructed signal. 

PRD is a statistic that assesses a model’s overall quality 

across all data points, with the objective of measuring the 

quantity of diagnostic information maintained in the model’s 

features after modelling ECG raw. 

In the context of the current study, the input to the KNN 

algorithm is the Chebyshev polynomial coefficients ck, which 

are calculated for each heartbeat. The algorithm uses these 

coefficients as features to classify each heartbeat as normal or 

PVC. 

 

2.3 Classification using KNN 

 

The k-nearest neighbours (KNN) algorithm is a simple type 

of supervised machine learning technique that is capable of 

resolving both classification and regression problems. This 

approach locates the k-nearest neighbours in the feature space 

to the input data point and using the consensus of these 

neighbours to classify the input point. Therefore, selecting the 

k parameter in the KNN algorithm is critical and should be 

done carefully. In this study, the k nearest neighbours value 

was varied between 1 to 10, and the best accuracy was 

achieved with k = 1. 

The KNN algorithm provides the benefit of filtering out 

irrelevant data, which can enhance the precision of detecting 

PVC. 
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The KNN classifier’s effectiveness was measured by 

employing multiple performance measures like sensitivity 

(SE), specificity (SP), and accuracy (ACC) to appraise the 

classification outcomes’ excellence: 

 

Accuracy = ACC =
TP + TN

TP + FN + TN + FP
× 100 (13) 

  

Specificity = SP =
TN

TN + FP
 × 100 (14) 

 

Sensitivity = Se =
TP

TP + FN
 × 100 (15) 

 

here, the abbreviations TP refer to true positives, TN refer to 

true negatives, FP refer to false positives, and FN refer to false 

negatives. 

 

2.4 Data information and visualization 

 

The MIT-BIH Arrhythmia Database [33] is a well-respected 

benchmark for evaluating arrhythmia detection. It comprises 

48 Holter recordings from 25 male and 22 female subjects, 

each slightly over 30 minutes long and recorded with two leads 

(upper and lower signals). Every record in the MIT-BIH 

Arrhythmia Database contains a pair of signal channels 

sampled at 360Hz with a precision of (11 bits)/sample. We 

exclusively utilised the MLII electrode signal from the 

database. Note that records 201 and 202 come from a single 

male participant, while the remaining entries are from distinct 

individuals. This database is highly valued by researchers for 

its comprehensive annotations, made by multiple cardiologists, 

and the large number of records it offers. 

According to AAMI (Association for the Advancement of 

Medical Instrumentation) standards, ECG beats are divided 

into five super classes depending on the ECG signal origin: N 

(normal or bundle branch block), S (supraventricular abnormal 

beats), V (ventricular abnormal beats), F (fusion beats), and Q 

(unclassified beats). 

In this work, during the classification phase, the fusion beat 

(F) and the Q (unclassified beats) are excluded. Table 1 assigns 

the eleven classes to the normal and PVC groups. We propose 

four schemes for dividing the remaining ECG records to assess 

the efficiency of the proposed techniques. Table 2 displays the 

data divided into test and training groups. The majority 

scholars adopted scheme 1, which was recommended by 

AAMI and can ensure an equitable comparison between our 

suggested method and other related studies. In scenarios where 

the training set has more samples than the test set, it is feasible 

to utilise Schemes 2, 3, and 4 to evaluate the efficacy of the 

proposed method. Where N and V denote the numbers of 

normal and PVC beats in each dataset, respectively. 

To ensure that the suggested approach is appropriate for the 

variances in ECG rhythm and its morphological alterations, 

twelve classes (4 super classes) recommended by the AAMI 

are included in the modelling evaluation, while the Q 

(unclassified beats) are excluded. The simulation results of 

modelling using the MATLAB® environment are reported in 

Table 3. 

 

Table 1. Displays the annotations for the MIT/BIH database 

and the distribution of the annotated beats among different 

groups 

 
MIT/BIH 

annotation 
Description Class 

V Premature ventricular contraction Class PVC 

E Ventricular escape beat Class PVC 

N Normal beat Class normal 

L Left bundle branch block beat Class normal 

R Right bundle branch block beat Class normal 

e Atrial escape beat Class normal 

j Nodal (junctional) escape beat Class normal 

A Atrial premature beat Class normal 

a Aberrated atrial premature beat Class normal 

J Nodal (junctional) premature beat Class normal 

S 
Supraventricular premature or 

ectopic beat 
Class normal 

 

 

Table 2. The method of detailed division of datasets into test and training groups 

 
Scheme Dataset Records N V 

Scheme 1 

Training 

set (DS1) 

101, 106, 108, 109, 112, 114, 115, 116, 118, 119, 122, 124, 201, 

203, 205, 207, 208, 209, 215, 220, 223, 230 
35,640 2,851 

Test set 

(DS2) 

100, 103, 105, 111, 113, 117, 121, 123, 200, 202, 210, 212, 213, 

214, 219, 221, 222, 228, 231, 232, 233, 234 
46,096 3,221 

Scheme 2 

Training 

set (DS1) 

100, 103, 105, 106, 108, 109, 111, 113, 114, 116, 118, 119, 121, 

123, 124, 200, 201, 202, 203, 205, 207, 208, 209, 210, 212, 213, 

214, 215, 219, 222, 223, 228, 230, 231, 232, 234 

53,279 4,277 

Test set 

(DS2) 
101, 112, 115, 117, 122, 220, 221, 233 16,682 1,227 

Scheme 

3 

Training 

set (DS1) 

100, 101, 103, 105, 106, 108, 109, 111, 112, 113, 114, 115, 117, 

118, 119, 121, 122, 123, 124, 200, 201, 202, 203, 207, 208, 209, 

210, 212, 213, 214, 215, 219, 220,222, 223, 228, 230, 231, 232, 

233, 234 

62,706 4,862 

Test set 

(DS2) 
116, 205, 221 6,908 576 

Scheme 

4 

Training 

set (DS1) 

103, 105, 106, 108, 109, 111, 112, 114, 115, 117,118, 119, 121, 

122, 123, 124, 200, 201, 202,208,210,214, 231,234 
47,567 3,662 

Test set 

(DS2) 

100,101,102,104,113,116,122,205,209,212,215,220,221,222,228, 

230,232 
34,783 1,111 
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3. RESULTS AND DISCUSSION 

 

The effectiveness of the technique depends on the capability 

of the polynomial to accurately approximate the signal. In 

order to evaluate this, Chebyshev polynomials were tested 

using signals from the MIT-BIH Arrhythmia Database [33]. 

The evaluation results are presented below. A total of 518 

beats were taken into account, with fifty beats from each class 

except for the SP and AE classes, where the overall number is 

only 16 and 2, respectively.  

Overall results are summarised in Table 3, and Figure 2 

displays examples of original signals (solid line) and their 

reconstructed versions (star line) for the twelve classes 

recommended by the AAMI. 

Table 4 shows a comparison of modelling results between 

the raised algorithm and other approaches used in previous 

studies. 

The current research study includes all types of arrhythmias 

recommended by AAMI. This is a continuation of our earlier 

research [12]. 

Notably, it is particularly challenging to provide a fair and 

objective comparison due to the diversity in the approaches 

used in previous studies. However, based on the statistical 

values presented in Table 4, the proposed method 

outperformed [6, 11] in terms of PRD, indicating that a 

significant improvement has been achieved. Talbi and Ravier 

[22] evaluated the modelling quality using the signal-to-error 

ratio (SER) and compared FLP coefficients to LP coefficients 

by calculating the SER values between predicted and original 

waves to assess the efficiency of FLP coefficients in modelling 

QRS complex waves. 

Table 3 shows that the mean PRDs for all tested ECG 

heartbeats were relatively low, ranging from 2.01% for the 

LBBB class to 7.53% for the AAP class. The standard 

deviation (STD) was used to measure the dispersion of results 

around the mean values, and a low value of this measure 

indicates satisfactory results. The STD varies between 0.10 

and 0.57 for different classes. In addition, the variations in 

PRD values between the N and SVEB categories are found to 

be higher than those between the VERBs and F categories. 

 

Table 3. PRD of different classes of ECG signal 

 
ECG Class ECG type MIT-BIH Label No. of beats Mean PRD (%) Max Min Std 

Beats originated in sinoatrial (SA) node (N) 

Nor 1 50 6.81 7.51 2.58 0.20 

LBBB 2 50 2.01 2.22 1.44 0.43 

RBBB 3 50 3.73 4.11 2.61 0.32 

AE  34 16 4.90 8.82 2.63 0.37 

NE 11 50 5.82 7.63 3.40 0.10 

 

Supraventricular ectopic beats (SVEBs) 

AP 8 50 4.43 4.58 3.96 0.13 

aAP 4 50 7.53 9.36 2.43 0.16 

NP 7 50 6.65 13.38 1.96 0.32 

SP 9 2 5.50 6.02 4.99 0.28 

Ventricular ectopic beats (VEBs) PVC 5 50 3.22 3.57 2.45 0.57 

VE 10 50 3.06 3.52 2.29 0.23 

Fusion beats (F) Fusion beats 6 50 2.57 3.14 1.37 0.53 

 

Table 4. Comparative study of modelling results using the suggested algorithm and previous works 

 
Author Method Modelling application PRD (%) Mean (SER)±std (%) 

Talbi and Ravier [22] Fractional linear prediction Detection of PVC in ECG  
PVC 58.19±3.64 

Other 56.70±2.21 

Baali et al. [6] 
Signal dependent 

orthogonal transform 
- 

Min 3.1545 PVC 

Max 10.8152 NE 
- 

Tchiotsop et al. [11] Orthogonal polynomials 
Compression of ECG signal 

CR=4.44 
4.94 - 

This paper Chebyshev Polynomial PVC classification 
Min 2.01 LBBB 

Max 7.53 aAP 
- 

 

Table 5. Results of the arrhythmic beat classification using the k nearest neighbour classifier 

 
 Sensitivity (%) Specificity (%) Accuracy (%) 

Scheme 1 98.59 62.67 95.58 

Scheme 2 98.69 54.86 94.15 

Scheme 3 99.07 98.65 99.04 

Scheme 4 99.86 85.11 99.35 
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(a) Normal (b) LBBB 

  
(c) RBBB (d) Ae 

  
(e) NE (f) AP 

  
(g) AAP (h) NP 

  
(i) SP (j) PVC 
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(k) VE (l) Fusion 

 

Figure 2. Reconstructed ECG beats for all categories 

 

Table 6. Comparative analysis of modelling results using the suggested algorithm and previous works 

 
Author Dataset Feature Classifier Results 

Mitra and 

Samanta [13] 
UCI database 

correlation-based, rough set theory feature subset 

selection (CFSS), Association Rules (AR), and 

principal component analysis (PCA) 

Incremental back 

propagation neural 

network (IBPLN) 

Accuracy: 87.71% 

Kaya and 

Pehlivan [34] 

Physionet 

3500 normal 

3500 PVC 

PCA, ICA, SOM KNN 

Accuracy: 99.63% 

Sensitivity: 99.29% 

Specificity: 99.89% 

Jenny et al. [1] 

Physionet 

1000 normal 

1000 PVC 

ICA, DWT 
C-Means (FCM) 

k-means and Fuzzy 

Accuracy: 80.94% 

Sensitivity: 81.10% 

Specificity: 80.1% 

Dong et al. 

[20] 

Physionet 

8191 normal 

1941 PVC 

Variance & entropy of wavelet coefficient, 

Continuous ECG beat R-R ratio, 
SVM Accuracy: 93.17% 

Rizal et al. [19] 

Physionet 

6726 normal 

2258 PVC 

Multilevel wavelet packet entropy SVM Accuracy: 94.9% 

Talbi and 

Ravier [22] 

Physionet 

88,596 normal 

7147 PVC 

Fractional linear prediction 

Neural network trained 

by levenberg–Marquardt 

rule 

Accuracy: 95.0% 

Sensitivity: 85.0% 

Specificity: 95.0% 

Xie et al. [23] 

Physionet 

46539 normal 

94112 PVC 

R amplitude 

PR interval 

QRS interval 

QT interval 

QRS area 

pre_RR interval 

post_RR interval 

Random forest (RF) 

Accuracy: 96.38% 

Sensitivity: 97.56% 

Specificity: 97.88% 

De Oliveira et 

al. [21] 

Physionet 

150,534 normal 

7224 PVC 

A set of geometrical features SVM 

Accuracy: 99% 

Sensitivity: 98.5% 

Specificity: 99.5% 

Yu et al. [16] 

Physionet 

Scheme 1 

33,868 normal 

2548 PVC 

 

Scheme 2 

16,229 normal 

1122 PVC 

 

Scheme 3 

6802 normal 

537 PVC 

Extract features with deep learning 1D CNN 

Accuracy: 99.64% 

Sensitivity: 96.98% 

Specificity: 99.84% 

 

Accuracy: 100% 

Sensitivity: 100% 

Specificity: 100% 

 

Accuracy: 99.99% 

Sensitivity:99.81% 

Specificity:100% 

Yu et al. [24] 

Physionet 

33,868 normal 

2548 PVC 

Extract features with deep metric learning KNN 

Accuracy: 99.69% 

Sensitivity: 97.40% 

Specificity: 99.87% 

Zhou et al. [25] 

Physionet 

75 normal 

425 PVC 

Learned features automatically RNN 

Accuracy: 99% 

Sensitivity:99% 

Specificity: 96% 

Zhao et al. [26] 

Physionet 

742 normal 

775 PVC 

Learned features automatically from time-frequency 

images 
2D CNN 

Accuracy: 97.89% 

Sensitivity:98.58% 

Specificity: 97.17% 
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Li et al. [27] 

Physionet 

51043 normal 

3633 PVC 

Learned features automatically from wavelet power 

spectrums 
2D CNN 

Accuracy: 97.96% 

Sensitivity:82.60% 

Specificity: 99.11% 

Gordon and 

Williams [30] 

Physionet 

51042 normal 

3633 PVC 

Learned features automatically by convolutional 

autoencoder 
RF 

Accuracy: 98.55% 

Sensitivity:91.41% 

Specificity: 99.06% 

Al Rahhal et al. 

[31] 
INCART database 

Learned features automatically by the stacked 

denoising autoencoders networks 
DNN 

Accuracy: 98.6% 

Sensitivity:91.4% 

Specificity: 93.9% 

Hoang et al. 

[28] 

St. Petersburg Institute 

of Cardiological 

Technics 

569 normal 

481 PVC 

Learned features automatically by the Wavelet 

fusion method, Tucker-decomposition 
2D CNN 

Accuracy: 90.84% 

Sensitivity:78.6% 

Specificity: 99.86% 

Liu et al. [29] 

Children’s Hospital of 

Shanghai.  

1000 normal 

1000 PVC 

Learned features automatically from waveform 

images 
2D CNN Accuracy: 88.5% 

This paper 

Physionet: 

Scheme 1 

46096 normal  

3221 PVC 

 

Scheme 2 

16682 normal 

1227 PVC 

 

Scheme 3 

6908 normal 

576 PVC 

 

Scheme 4 

34783 normal 

1111 PVC 

Chebyshev polynomial coefficients KNN 

Accuracy: 95.58% 

Sensitivity: 98.59% 

Specificity: 62.67% 

 

Accuracy: 94.15% 

Sensitivity: 98.69% 

Specificity: 54.86% 

 

Accuracy: 99.04% 

Sensitivity: 99.07% 

Specificity: 98.65% 

 

Accuracy: 99.35% 

Sensitivity: 99.86% 

Specificity: 85.11% 

In the second section, we evaluate the effectiveness of 

Chebyshev polynomial coefficients in distinguishing PVC 

arrhythmias, using a K-nearest neighbour classifier and the 

results are presented in Table 5. Table 6 compares the accuracy 

of the raised method with other approaches used in previous 

studies. 

Table 5 illustrates that the suggested method exhibits 

superior performance in scheme 4 when compared to schemes 

1, 2, and 3. However, schemes 2 and 3 can be used to assess 

the effectiveness of the suggested method when the number of 

training samples exceeds the number of test samples. 

Considering Table 6, it is evident that the accuracy, 

sensitivity, and specificity of the suggested classification 

approach surpass those of Mitra and Samanta [13], Jenny et al. 

[1], Dong et al. [20], Rizal et al. [19], and Liu et al. [29]. 

Moreover, compared to Talbi et al. [22], Xie et al. [23], De 

Oliveira et al. [21], Zhou et al. [25], Zhao et al. [26], Li et al. 

[27], Gordon and Williams [30], Al Rahhal et al. [31], and 

Hoang et al. [28], the proposed classifier exhibits higher 

accuracy and sensitivity. This suggests that the proposed 

classification approach is better at distinguishing PVC beats 

compared to previous studies, even though those studies 

evaluated less record than the proposed method did [1, 25, 26, 

28, 29]. 

In addition, the Zhou et al. [25] and Zhao et al. [26] 

classification methods present a higher specificity than the 

suggested approach. However, they considered a very small 

dataset; the authors of [25] used only 75 normal and 425 PVC 

heartbeats for the experiment. Similarly, the authors of [26] 

validated their system using only 742 normal and 775 PVC 

heartbeats.  

On the other hand, the proposed approach was not superior 

to the references [16, 24, 34] in terms of specificity and 

accuracy. Second, the accuracy of the suggested approach is 

found to be good, with only 0.34% less than the reference [24]. 

Yu et al. [16] suggested a technique that employs a one-

dimensional convolutional neural network (CNN) to identify 

PVC beats, which results in a high accuracy rate of 99.64%. 

Nevertheless, the technique requires the adjustment of 

numerous parameters, including kernel size and number, batch 

size, and activation functions (e. g. Sigmoid, Tanh). In 

addition, the number of layers frequently impacts the model’s 

complexity, which can affect the training process and make it 

time-consuming if the model’s complexity is either too high or 

too low. 

In our study, a relatively large number of normal beats were 

incorrectly identified as PVC beats (a high number of false 

positives). This outcome may be attributed to the diverse 

morphologies in the normal beat class (such as LBBB, RBBB, 

etc.), as we classified PVC beats from all other beat types. 

The proposed classification method yielded an accuracy of 

99.35%, a sensitivity of 99.86%, and a specificity of 85.11%. 

These outcomes are highly pleasing given the 

straightforwardness of the classification scheme. Our results 

demonstrate that the suggested PVC classification technique 

offers comparable performance to other approaches while 

using a large amount of data from the MIT-BIH Arrhythmia 

Database. Furthermore, this approach can be extended to 

analyse other physiological signals, presenting new 

opportunities for research in this area. 

 

 

4. CONCLUSIONS 

 

A method for efficient ECG signal modelling of all twelve 

classes from the MIT-BIH database is suggested, with good 
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results demonstrated in terms of PRDs and STDs. Additionally, 

a proposed method for clustering heartbeats into normal and 

premature ventricular contraction classes using Chebyshev 

polynomial coefficients and the KNN classifier was evaluated 

using the same database. The overall accuracy of the 

classification experiment using around 35894 beats was 

99.35%, while the specificity and sensitivity were 85.11% and 

99.86% respectively. These findings are considered very 

satisfactory due to the simplicity of the classification scheme, 

which holds great importance in its application in clinical 

settings. 

The comparative results indicate that our suggested 

classification approach provides very competitive 

performance. Finally, this study leads to a future direction 

where the classification of many arrhythmic beats, such as 

LBBB, RBBB, etc. can be tested. To summarise, a natural 

progression of this work would be to first understand the 

features derived and how they help in identifying PVCs from 

normal beats, and then introduce a novel approach for 

classifying several arrhythmic beats. 
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