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In order to ensure the safe, stable, and efficient operation of electrical control equipment, 

the patrol inspection and maintenance are especially important. Research on electrical 

control equipment patrol inspection method based on high quality image recognition 

technology is of great significance, because the method replaces traditional manual patrol 

inspection to some extent and reduces labor costs. The existing methods based on low-

illumination image recognition technology meet the patrol inspection requirements in low-

illumination environment to a certain extent, but they still have certain limitations. 

Therefore, this research aimed to study the electrical control equipment patrol inspection 

method based on high quality image recognition technology. Electrical control equipment 

patrol inspection images were enhanced based on Deep Curve Estimation Network (DCEN) 

in order to improve the visibility of equipment anomaly features, which helped reduce the 

misjudgment and misdetection risks during the patrol inspection process. The patrol 

inspection image set was reconstructed in super resolution, and was combined with clear 

images to construct a new image set, which improved the patrol inspection efficiency. The 

electrical control equipment detection process based on YOLO V3 was elaborated. The 

experimental results verified that the proposed method and constructed model in this study 

were effective. 
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1. INTRODUCTION

With the rapid development of modern industry, electrical 

control equipment plays an increasingly important role in 

various fields [1-3]. However, it may malfunction after long-

time operation, leading to decreased equipment performance 

or even shutdown [4-9]. In order to ensure the safe, stable, and 

efficient operation of electrical control equipment, the patrol 

inspection and maintenance are particularly important [10-15]. 

In real life, many electrical equipment often operate in low-

illumination environment, which makes the patrol inspection 

difficult [16-18]. Traditional manual patrol inspection method 

is prone to misjudgment and misdetection in low-illumination 

environment, while the method based on high quality image 

recognition technology effectively improves patrol inspection 

efficiency. At the same time, certain safety hazards exist in 

low-illumination patrol inspection, especially in situations 

with hazardous factors, such as electric arcs and sparks. 

Therefore, it is of great significance to study the electrical 

control equipment patrol inspection method based on high 

quality image recognition technology, which to some extent 

replaces traditional manual patrol inspection and reduces labor 

costs. 

Video surveillance was introduced into remote monitoring 

of power equipment operation status a long time ago. Wan et 

al. [19] proposed that both "remote viewing" and image 

monitoring of production environment using robots lacked 

information processing functions, making it difficult to 

intelligently and proactively identify and analyze the 

monitored targets. Operators needed to observe and analyze 

images at any time, which actually increased the burden of 

dispatchers. Edge service, including electrical equipment 

intelligent detection in power Internet of Things (IoT), usually 

used deep neural network (DNN) to accurately identify 

abnormal devices through image classification and target 

detection, thus reducing workload on the power cloud. 

However, due to the limited computing power and storage 

space of edge devices, the high computational complexity 

based on neural network model brought great challenges to 

edge service and application in the real world. Shang et al. [20] 

proposed an intelligent electrical equipment detection 

framework based on DNN model compression. Instead of 

manually setting the compression rate of each layer using any 

hyperparameter, combined methods were used to 

automatically prune and quantify DNN in edge service, which 

processed and analyzed real-time massive data acquired by 

multiple power equipment, thus reducing the computational 

complexity and workload of edge computing service. Li and 

Zhang [21] obtained an intelligent customized operation 

model for the detection process by introducing automatic 

planning algorithm. The model was described as Planning 

Domain Definition Language (PDDL), which provided 

intelligent decision-making assistance for daily work. Chen et 

al. [22] proposed an efficient registration method based on 

quadrilateral features of electrical equipment. The 

quadrilateral structure information of the monitored target was 

reconstructed from the original image using contour and line 

detection techniques. The experimental results showed that the 

proposed registration method quickly and accurately aligned 

visible light and infrared images, which was less likely to be 
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affected by image quality or other unrelated targets. 

The existing electrical control equipment patrol inspection 

methods based on low-illumination image recognition 

technology mainly include several methods, such as the 

method based on multi-frame fusion, deep learning-based 

method, and infrared imaging-based method. However, the 

multi-frame fusion method requires processing a large amount 

of data and the high computational complexity may affect the 

real-time patrol inspection. Infrared imaging equipment has 

high costs and low resolution, which may not meet the needs 

of high-precision patrol inspection. Therefore, the existing 

methods meet the patrol inspection requirements in low-

illumination environment to a certain extent, but they still have 

certain limitations, such as unstable image quality. Therefore, 

this research studied the patrol inspection method based on 

high quality image recognition technology. Electrical control 

equipment patrol inspection images were enhanced based on 

DCEN in order to improve the visibility of equipment 

abnormal features in Chapter 2, which helped reduce the 

misjudgment and misdetection risks during the patrol 

inspection process. The patrol inspection image set was 

reconstructed in super resolution, and was combined with clear 

images to construct a new image set in Chapter 3, which 

improved the patrol inspection efficiency. The electrical 

control equipment detection process based on YOLO V3 was 

elaborated in Chapter 4. Finally, the experimental results 

verified that the method and model in this study were effective. 

 

 

2. ENHANCEMENT OF LOW-ILLUMINATION 

PATROL INSPECTION IMAGES 

 

During the patrol inspection process, the original electrical 

control equipment images in low-illumination environment, 

such as computer rooms, distribution rooms, and tunnels, are 

likely to have some problems, such as loss of dark details, low 

contrast, and poor visual effects. Moreover, it may be difficult 

to accurately identify the equipment fault symptoms in low-

illumination environment, such as temperature anomaly, local 

arcs, and insulation damage. Image enhancement effectively 

improves image quality, and enhances the brightness, contrast 

and color balance of images, which make the images more in 

line with the needs of human eye observation and computer 

processing. At the same time, the visibility of equipment 

anomaly features can be improved, which helps reduce the 

misjudgment and misdetection risks during the patrol 

inspection process. 

In practical application scenarios of patrol inspection, 

DCEN has some irreplaceable advantages compared with 

Retinex-Net used for low-illumination image enhancement. 

As an end-to-end deep learning method, DCEN directly learns 

the mapping relationships between the output images from the 

input images, without additional preprocessing or post-

processing steps. In contrast, Retinex-Net uses Retinex theory 

for image decomposition, which may require some 

preprocessing and post-processing steps, increasing 

implementation complexity. DCEN has strong adaptability by 

automatically learning the local curve adjustment strategies of 

images, thus achieving good enhancement effects in different 

low-illumination environments. However, possibly limited by 

the Retinex theory, the performance of Retinex-Net in 

different scenarios may depend more on parameter adjustment. 

DCEN aimed to estimate the best fit light enhancement 

curves in order to enhance low-illumination images. When 

estimating the light enhancement curves, DCEN needed to 

meet several requirements, such as maintaining the naturalness 

of images, enhancing the visibility of details, reducing noises 

and artifacts, as well as maintaining the color characteristics, 

real-time performance and computational efficiency of 

original images. By meeting the above requirements, the 

DCEN effectively enhanced low-illumination images and 

provided high quality image data for electrical control 

equipment patrol inspection tasks. Figure 1 shows the 

workflow diagram of DCEN. 

 

 
 

Figure 1. Workflow diagram of DCEN 

 

Let b be the number of iterations, Sb be the b-th iteration 

parameter, and ZQb be the enhanced image obtained after the 

b-th iteration. To meet the goal of the best fit light 

enhancement curves, the following formula provided the 

quadratic curve expression used in DCEN: 

 

( ) ( ) ( ) ( )( )1 1 11b b b b bZQ z ZQ z S ZQ z ZQ z− − −= + −  (1) 

 

The loss function of DCEN consisted of four parts, namely, 

loss of spatial consistency, exposure control, color constancy, 

and illuminance smoothness. Let QCO and QTVS be the loss 

weights, then the loss function was expressed as follows: 

 

S STO SP EX CO CO TV TVM M M Q M Q M= + + +  (2) 

 

MSP setting aimed to promote the spatial coherence of the 

enhanced image, mainly by preserving the difference of 

adjacent regions between the input patrol inspection image and 

the enhanced image. Let J be the number of local regions, Ψ(u) 

be the above, below, left and right four adjacent regions 

centered around region u, T be the average value of local 

regions in the enhanced image, and U be the average value of 

local regions in the input image, then: 
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MEX setting aimed to limit underexposed or overexposed 

image regions, mainly by calculating the distance between the 

average intensity value of local regions of the patrol inspection 

image and the exposure level R. Let L be the number of non-

overlapping local regions, and T be the average intensity value 

of local regions in the enhanced image, then: 
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L

EX j

j
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L

=

= −  (4) 

 

Let Ko be the average intensity value of P channel in the 

enhanced image, and (w,o) be a pair of channels. By following 

the Gray-World assumption of color constancy, the expression 

of color constancy loss MCO was given as follows: 
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MTVS setting aimed to maintain the monotonic relationships 

between adjacent pixels in the image. Let ∇z and ∇t be finding 

the gradients along the x and y directions, respectively, and B 

be the number of parameter diagrams, then: 
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DCEN adjusted the brightness, contrast and color balance 

of the input low-illuminance image, which made the dark 

details more visible, thus outputting an enhanced image. By 

learning the local light enhancement curves adaptively, the 

network not only made the output image maintain the overall 

brightness and color balance, but also better enhanced the local 

details and improved the image contrast. The DCEN adopted 

in this study used multi-layer convolutional neural network as 

the basic framework, and realized the feature extraction and 

representation of the input image through convolution layer, 

activation function, pooling layer and other components. In 

terms of structural design, multi-scale feature extraction was 

taken into consideration, and multi-scale representation of 

image features was achieved through different sizes of 

convolutional kernels and pooling layers, which improved the 

accuracy of light enhancement curve estimation. 

 

 

3. RECONSTRUCTION OF LOW-RESOLUTION 

PATROL INSPECTION IMAGES  

 

During the patrol inspection process of electrical control 

equipment, low-resolution blurred images may result in the 

difficulty in accurately identifying equipment anomalies. 

Meanwhile, due to the limitations of factors, such as costs and 

installation space, it may not be possible to use high-resolution 

camera equipment for patrol inspection. In this case, super-

resolution reconstruction of low-resolution blurred images 

provides higher quality image data, which compensates for the 

limitations of the device. Moreover, after the super-resolution 

reconstruction, the blurred image set is combined with clear 

images to construct a new patrol inspection image set, which 

improves the patrol inspection efficiency, because high quality 

image data reduces the misidentification and misdetection 

risks, which reduces the time spent by patrol inspectors in 

reviewing and handling misinformation. 

Super-Resolution Convolutional Neural Network (SRCNN) 

is a super-resolution reconstruction method based on deep 

convolutional neural network, which learns the features of 

high-resolution images from low-resolution images, thus 

achieving super-resolution reconstruction of images. SRCNN 

consists of three convolutional layers, which are used for 

image feature extraction, nonlinear mapping, and high-

resolution image reconstruction. Rectified Linear Unit (ReLU) 

is used as the activation function, which effectively improves 

the nonlinear expression ability of the network. An end-to-end 

training strategy directly learns the mapping relationships 

between low- and high-resolution images, which improves 

training and inference efficiency. Figure 2 shows the network 

structure of SRCNN. 

 

 
 

Figure 2. Network structure of SRCNN 

 

 
 

Figure 3. Flowchart of super-resolution reconstruction of 

low-resolution images 

 

Low-resolution electrical control equipment patrol 

inspection images were reconstructed in super resolution 

based on SRCNN. The original images were first divided into 

two categories: one was a qualified clear image set used as a 

train set, and the other was a low-resolution blurred image set 

used as pending images. The blurred images were 

preprocessed, including image scaling, normalization and 

other operations, in order to make them suitable for SRCNN 

network input. The SRCNN model was trained using a clear 

image set and corresponding low-resolution image pairs in 

order to learn the mapping relationships between low- and 

high-resolution images. The trained model was applied to the 

pending low-resolution blurred images, thus achieving super-

resolution image reconstruction. Then the reconstructed 

images were post-processed, such as adjusting brightness, 

contrast and other parameters, in order to better meet patrol 

inspection requirements. Finally, the processed high-

resolution images were combined with the clear image set in 

order to construct a new image set, which was used for 

subsequent electrical control equipment patrol inspection tasks. 

Low-resolution images were effectively processed through the 
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above steps, which improved the image quality. Figure 3 

shows the super-resolution reconstruction flowchart of low-

resolution images. 

In order to obtain the mapping function D(T) between high-

resolution images, network parameters, such as 

ϕ={Q1,Q2,Q3,n1,n2,n3}, needed to be learned when training the 

super-resolution reconstruction network. Let Z be the original 

image, and D(T;ϕ) be the reconstructed image, that is, the 

parameters ϕ were learned using the error between D(T;ϕ) and 

Z. The mean square error (MSE) was selected as the loss 

function in the model. Let b be the number of training samples, 

Zu be the original high-resolution patrol inspection image, and 

Tu be the input low-resolution image, then the expression of 

loss function was as follows: 

 

( ) ( )
2

1

1
;

b

u u

u
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=
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When the corresponding MSE between D(Tu;ϕ) and Zu was 

the smallest, and the peak signal-to-noise ratio was the highest, 

making it easier to obtain the optimal parameters. In order to 

obtain a small MSE, the weight Q and the bias n were 

optimized based on the Adam optimization algorithm. Let 

io(T)=T ⊗ 1b×b be the upsampling operation realized by 

Kronecker product, σm
k be the k-th feature map of the m-th 

layer, αm+1
k be the trainable parameters, and  be the 

multiplication of each element, then the calculation formula of 

residual σ was as follows: 

 

( ) ( )1 10,m m m m
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 
 (8) 

 

Since the result of multiplying zm-1
u with each weight during 

convolution was om-1
u, let λ be the learning rate, then the 

parameters were updated using the following formulas based 

on the chain rule: 
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4. ELECTRICAL CONTROL EQUIPMENT 

DETECTION BASED ON YOLO V3 

 

Due to the fast detection speed, YOLO V3 achieves real-

time target detection, and is suitable for real-time patrol 

inspection scenarios for efficiency improvement. In addition, 

it has high detection accuracy, which helps accurately detect 

abnormal equipment components. YOLO V3 makes 

predictions at multiple scales through the Feature Pyramid 

Network (FPN), thus detecting targets in images of different 

scales. Based on the above advantages, YOLO V3 was 

selected in this study for electrical control equipment detection. 

Figure 4 shows the network structure of YOLO V3. 

Prediction results of YOLO V3 included bounding box 

parameters, target score parameters, and category prediction 

parameters. The position, size, category and other information 

of the target object was obtained based on these parameters. 

The detection steps were as follows: 

1. Data preprocessing: the new patrol inspection image set 

was preprocessed, and the images were adjusted to 416×416 

resolution to meet the network input requirements. 

2. Feature extraction: the preprocessed images were input 

into the Darknet-53 network to extract image features. 

3. Target detection: the feature output was delivered to FPN 

for target detection prediction at three different scales. 

4. Result filtering: the bounding boxes, whose Intersection 

overUnion (IoU) with ground truth exceeded the selected 

threshold, were filtered based on the predicted results. 

5. Detection result output: the classification and 

corresponding positioning of each filtered bounding box were 

output to obtain the detection results of electrical control 

equipment patrol inspection. 

 

 
 

Figure 4. Network structure of YOLO V3 

 

 
 

Figure 5. Electrical control equipment detection flowchart 

 

Figure 5 shows the detection flowchart of electrical control 

equipment. Let yz, yt, yq and yg be the four coordinate values of 

differences in abscissa, ordinate, box width and height 

between center points of the predicted box and the anchor box 

in YOLO V3 network prediction. It’s assumed that the 

deviation between the upper left corners of the grid and the 

image was (vz,vt) grids, and the values of yz and yt were 

normalized to [0,1]. Let δ(·) be the sigmoid function, oq and og 

be the width and height of the prior bounding box, then the 

four coordinate values of the final prediction box were nz, nt, 

nq and ng obtained through calculation. The calculation 

formulas were as follows: 

 

( )z z zn y v= + , ( )t t tn y v= +  

qy

q qn o r= , gy

g gn o r=  
(11) 
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The YOLO V3 network training for electrical control 

equipment detection had the following seven steps: 

(1). Data preparation: a large amount of equipment image 

data was collected, including images of normal and abnormal 

equipment. The original patrol inspection image set was 

preprocessed, including low-illumination image enhancement 

and super-resolution reconstruction. The processed images 

were combined with a clear image set to construct a new patrol 

inspection image set. 

(2). Data labeling: the new image set was labeled. For the 

equipment components in each image, the bounding boxes 

were drawn and category labels were assigned to them. The 

labeled data set was divided into train set, validation set, and 

test set. 

(3). Data preprocessing: images in the train, validation and 

test sets were preprocessed, including 416×416 resolution 

adjustment and normalization, in order to adapt to the input 

requirements of the YOLO V3 network. The label data was 

converted into a format, which was understood by the network. 

(4). Model configuration: YOLO V3 network was selected 

as the basic model, and the network output layer was adjusted 

based on the category number of electrical control equipment 

detection tasks. Model hyperparameters were configurated, 

such as loss function, optimizer, learning rate and so on. 

(5). Model training: the preprocessed train set data was 

input into the YOLO V3 network for training. In the training 

process, model performance was regularly evaluated using the 

validation set data. In addition, hyperparameters were adjusted 

using monitoring indexes, such as mean average precision 

(mAP) and IoU, to optimize the model performance. The 

model was trained until it converged or met the preset 

performance indexes. 

(6). Model evaluation and tuning: the trained YOLOV3 

model was evaluated using test set data, and its performance 

in equipment detection tasks was analyzed. According to the 

evaluation results, the model was further optimized, such as 

network structure modification and hyperparameter 

adjustment. 

(7). Model deployment: the trained YOLOV3 model was 

applied to actual electrical control equipment patrol inspection 

scenarios for detecting and locating abnormal equipment 

components in real time. 

 

 
 

Figure 6. Electrical control equipment detection model 

 

Figure 6 shows the detection model of electrical control 

equipment. Let ab∈ [0,1] be the target scores of network 

prediction, and hb∈{0,1} be whether the b-th sample belongs 

to the target category, then the expression of loss function used 

in YOLO V3 parameter training was given as follows: 
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YOLO V3 network parameters were trained by minimizing 

∑M(Ab), the loss of all samples. 

Batch Group Normalization (BGN) combines Batch 

Normalization (BN) with Group Normalization (GN), which 

has better performance by combining advantages of the two 

methods. In practical application scenarios of electrical control 

equipment patrol inspection, the mean value and variance on 

each channel are calculated and normalized in order for BGN-

based batch processing of the constructed YOLOV3 network, 

which reduces internal covariate deviation, thus improving the 

training process stability and helping train the network to 

converge to a good solution more rapidly. Compared with BN, 

the BGN relies less on batch size, indicating that BGN still has 

good performance even in small batch size. This is particularly 

useful in patrol inspection scenarios, because these scenarios 

may not be able to train with large batch size, such as hardware 

limitations or small amount of data. 

Let h∈[1, H], B be the batch size, H be the hyperparameter 

dividing the number of new dimension arrays, and A=L/H be 

the number of instances in each divided feature group. The 

formulas of calculating mean value ωh and variance σh along 

the batch and the new dimension were provided as follows: 
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The Adam optimization algorithm assigned independent 

learning rate to each parameter, and the learning rate was 

automatically adjusted based on first and second moment 

estimations. This meant that the network adaptively adjusted 

the learning rate for different parameters during the training 

process, thus better adapting to various complex scenarios in 

patrol inspection tasks. Meanwhile, the Adam algorithm 

estimated the first and second moments of the gradient using 

the exponential weighted moving average technology, which 

enabled the gradient to converge faster during the training 

process. This led to high performance of the YOLO V3 

network in a short period of time, thus more effectively 

responding to the actual patrol inspection needs. The Adam 

optimization algorithm had strong robustness for parameter 

updating and overcame several problems during the training 

process, such as gradient sparsity and noises, which was 

particularly important in patrol inspection tasks, because the 

data in these tasks may contain noises or other irregular 

features. The YOLO V3 network better adapted to these 

problems using the Adam optimization algorithm, thus 

improving the accuracy and robustness of detection. 

The mathematical expressions of the Adam optimization 

algorithm were provided as follows: 
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where, the default settings are α1=0.9, α1=0.999, and γ=10-8. 

 

 

5. EXPERIMENTAL RESULTS AND ANALYSIS 

 

Figure 7 shows the loss variation curve graphs of Retinex-

Net and DCEN enhanced network. According to the loss 

variation curves, it can be observed that the DCEN enhanced 

network loss converges at 1.5×10-2, while the Retinex-Net loss 

converges at around 0.12, indicating that the DCEN enhanced 

network has superior performance compared with Retinex-Net 

because it has lower loss and faster convergence during the 

training process. Based on previous analysis, it was 

understood that DCEN had the ability to adaptively learn the 

optimal light enhancement curves, thus better processing low-

illumination patrol inspection images. In contrast, Retinex-Net 

decomposed images based on a fixed model, which may not 

achieve the desired enhancement effects in all cases. Therefore, 

DCEN was more effective in enhancing low-illumination 

patrol inspection images, thus providing clearer and more 

accurate images in patrol inspection tasks, thus helping 

improve the effectiveness and accuracy. 

 

 
(1) 

 
(2) 

 

Figure 7. Loss variation curve graphs of Retinex-Net and 

DCEN enhanced network 

Table 1. Model performance comparison before and after 

enhancement and reconstruction processing 

 

Training model 
AP 

(%) 

Training 

time (hour) 

FPS 

(frames/second) 

Before enhancement 

processing 
72.8 2.1 25 

After enhancement 

processing 
70.6 2.6 22 

Before reconstruction 85.9 5 9 

After reconstruction 80.5 8 1 

Enhancement + 

reconstruction 
88.2 9 4 

 

Table 1 presents the model performance comparison results 

before and after enhancement and reconstruction processing. 

According to the above table, the average accuracy (AP) is 

72.8% and 70.6% before and after enhancement processing, 

which has slightly decreased. The training time is 2.1 and 2.6 

hours before and after enhancement treatment, which has 

slightly increased. Frame Per Second (FPS) is 25 and 22 before 

and after enhancement, which has slightly decreased. AP is 

85.9% and 80.5% before and after reconstruction, which has 

decreased. The training time is 5 and 8 hours before and after 

reconstruction, which has significantly increased after 

reconstruction. FPS is 9 and 1 before and after reconstruction, 

which has significantly decreased. AP is 88.2% in 

"enhancement+reconstruction" situation, with better 

performance than other situations. The training time is 9 hours 

in "enhancement+reconstruction" situation, which is the 

longest. FPS is 4 in "enhancement+reconstruction" situation, 

which is relatively low. It can be seen that the enhanced model 

slightly decreases in AP, but maintains high training time and 

FPS. Although the reconstructed model decreases in AP, it 

significantly decreases in the training time and FPS. Overall, 

the impact of enhancement processing on model performance 

was slightly small in the "enhancement+reconstruction" 

processing. However, AP reached the highest value (88.2%) 

in the "enhancement+reconstruction" processing, though the 

training time was the longest and the FPS was lower. 

Therefore, model performance and real-time performance 

needed to be balanced in practical applications. If the goal was 

to achieve the highest detection accuracy, the 

"enhancement+reconstruction" processing needed to be 

chosen. 

 

 
 

Figure 8. Comparison of P-R curves before and after BGN 

and BN processing 

 

Figure 8 shows the comparison of P-R curves before and 

after BGN and BN processing. In the figure, the horizontal 

axis represents recall and the vertical axis represents precision. 
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By comparing the P-R curve data of BGN and BN, it can be 

observed that both BGN and BN have basically the same 

precision and perform well in the higher recall range (0-0.4). 

The precision of BGN is slightly higher than that of BN in the 

medium recall range (0.4~0.6), and is significantly higher than 

that of BN in the lower recall range (0.6~1). Comparative 

analysis showed that the model processed by BGN generally 

had higher precision in the entire recall range than the one 

processed by BN, which indicated that BGN processing in 

patrol inspection tasks improved the model performance more 

effectively, especially in the lower recall range. Therefore, 

BGN processing was beneficial for improving the precision of 

electrical control equipment detection model in practical 

applications. 

 

 
 

Figure 9. Comparison of P-R curves before and after Adam 

processing 

 

Figure 9 shows the comparison of P-R curves before and 

after Adam processing. By comparing the P-R curve data after 

and before Adam optimization, it can be observed that the 

precision after Adam optimization is significantly higher than 

that before optimization in the higher recall range (0-0.4). 

After Adam optimization, the precision is still higher than 

before optimization in the moderate recall range (0.4~0.6), and 

is significantly higher than before optimization in the lower 

recall range (0.6~1). Comparative analysis showed that the 

model processed by the Adam optimization algorithm 

generally had higher precision in the entire recall range that 

the one not processed by the algorithm, which indicated that 

the algorithm improved the model performance more 

effectively in electrical control equipment patrol inspection 

tasks. Therefore, the algorithm was beneficial for improving 

the precision of electrical control equipment detection model 

in practical applications. 

Table 2 presents the precision comparison results of 

different electrical control equipment detection models. 

According to the above table, it can be observed that the 

accuracy of the model constructed in this study (75.62%) is 

better than that of Faster R-CNN (63.48%) and ProtoNet 

(61.01%) at 400 iterations, indicating that the constructed 

model has already shown good performance in the early 

training stage. The accuracy of the constructed model is 

81.37% and 92.85% at 800 and 1200 iterations, respectively. 

Although the precision of the constructed model is slightly 

inferior to that of ProtoNet (85.69%) at 800 iterations, it is 

significantly better than that of Faster R-CNN (84.15%) and 

ProtoNet (80.96%) at 1200 iterations. The accuracy of the 

constructed model is 94.16% at 1,600 iterations, which is 

slightly lower than that of Faster R-CNN (97.46%) but higher 

than that of ProtoNet (90.51%). The constructed model has 

23.74 hours of training time, which is significantly shorter than 

that of Faster R-CNN (25.41 hours) and ProtoNet (28.69 

hours). In summary, the electrical control equipment detection 

model constructed in this study showed good performance in 

terms of precision and training time, which converged faster 

and obtained higher accuracy in practical applications, thus 

making the electrical control equipment patrol inspection tasks 

more effective. 

 

Table 2. Precision comparison of different electrical control equipment detection models 

 

Training model 
Training 

sample 

Accuracy of 400 

iterations (%) 

Accuracy of 800 

iterations (%) 

Accuracy of 1,200 

iterations (%) 

Accuracy of 1,600 

iterations (%) 

Training 

time (hour) 

Faster R-CNN 6,528 63.48 75.42 84.15 97.46 25.41 

ProtoNet 6,192 61.01 85.69 80.96 90.51 28.69 

Model in this study 6,374 75.62 81.37 92.85 94.16 23.74 

 

Table 3. Performance comparison of different electrical control equipment detection models 

 
Training model Testing sample Testing precision (%) FPS (frames/second) mAP 

Faster R-CNN 1,528 95.68 13.62 0.815 

ProtoNet 1,635 91.42 21.59 0.942 

Model in this study 1,041 90.57 28.37 0.905 

 

Table 3 shows performance comparison of different 

electrical control equipment detection models. According to 

the above table, it can be observed that Faster R-CNN has 

95.68% testing precision, which is the best, while the ProtoNet 

and the model constructed in this study have 91.42% and 

90.57% testing precision, respectively. Although the testing 

accuracy of the constructed model is slightly lower than that 

of the other two models, the difference is not significant. The 

constructed model has significant advantages with 28.37 FPS, 

which is significantly faster than the FPS of Faster R-CNN 

(13.62) and ProtoNet (21.59), indicating that the constructed 

model has significant advantages in real-time performance, 

because it processes and analyzes images faster. ProtoNet has 

0.942 mAP, which is the best. However, the mAP of the 

constructed model is 0.905, which is slightly lower than that 

of ProtoNet but higher than that of Faster R-CNN (0.815). In 

summary, the constructed model had slightly lower testing 

precision than Faster R-CNN and ProtoNet, though it showed 

significant advantages in real-time performance (FPS) and had 

high mAP value. Therefore, the constructed model could 

provide ideal performance in practical application scenarios of 

electrical control equipment detection, and was especially 

suitable for scenarios with high real-time performance 

requirements. 

Based on definition and resolution, the electrical control 

equipment patrol inspection images were classified, and high- 
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and low-resolution image data sets were constructed. When 

constructing the image sets, the number of images in each 

category should be relatively balanced to avoid model bias 

caused by category imbalance. A series of data enhancement 

techniques, such as rotation, scaling, flipping, color 

transformation and so on, were applied to the original images 

in order to increase the diversity of data sets and improve the 

generalization ability of the model. At the same time, each 

image in the image set should have accurate and detailed 

labeling information, including device type and status and so 

on, which helped improve the detection and recognition 

accuracy of the model. 

 

Table 4. Comparison of experimental results on high-

resolution data sets 

 

Training model 
5-Way 1-

Shot 

Training strategy in 

this study 

Traditional YOLO V3 52.41% 52.38% 

Traditional YOLO 

V3+BGN 
69.58% 74.61% 

Traditional YOLO 

V3+Adam 
73.61% 92.85% 

Model in this study 70.96% 96.38% 

 

Table 5. Comparison of experimental results on low-

resolution data sets 

 

Training model 
5-Way 1-

Shot 

Training strategy in 

this study 

Traditional YOLO V3 45.62% 68.49% 

Traditional YOLO 

V3+BGN 
59.48% 73.51% 

Traditional YOLO 

V3+Adam 
63.55% 85.47% 

Model in this study 66.81% 88.16% 

 

Tables 4 and 5 show the comparison of experimental results 

on high- and low-resolution data sets, respectively. According 

to the above table, it can be observed that the traditional 

YOLOV3 model has 52.41% accuracy on the 5-Way 1-Shot 

task, and its accuracy has increased to 52.38% after using the 

training strategy proposed in this study, indicating that the 

proposed training strategy has limited improvement effects on 

the traditional YOLO V3 model. After introducing BGN, the 

accuracy of the traditional YOLO V3+BGN model has 

significantly improved and reached 69.58%, and has further 

increased to 74.61% after adopting the proposed training 

strategy, demonstrating the effectiveness of BGN in model 

performance improvement. After introducing the Adam 

optimization algorithm, the accuracy of the traditional YOLO 

V3+Adam model has reached 73.61%, and has significantly 

increased to 92.85% after adopting the proposed training 

strategy, indicating the important role of the algorithm in 

model performance improvement. The accuracy of the model 

constructed in this study is 70.96% on the 5-Way 1-Shot task, 

and has significantly improved to 96.38% after adopting the 

proposed training strategy, proving significant model 

performance improvement of the proposed training strategy. 

In summary, the proposed training strategy improved the 

performance of different models to some extent, and especially 

significantly improved the accuracy of the traditional 

YOLOV3+Adam and the constructed model. Therefore, the 

training strategy proposed in this study had good optimization 

effects on high-resolution data sets, which helped improve the 

performance of the electrical control equipment detection 

model.  

According to the above table, it can be observed that the 

accuracy of the traditional YOLOV3 model is 45.62% on the 

5-Way 1-Shot task, and has significantly improved to 68.49% 

after using the training strategy proposed in this study, 

indicating that the proposed training strategy enables the 

traditional YOLO V3 model to have good optimization effects 

on the low-resolution data sets. After introducing BGN, the 

accuracy of the traditional YOLO V3+BGN model has 

improved to 59.48%, and has further improved to 73.51% after 

adopting the proposed training strategy, demonstrating the 

effectiveness of BGN in model performance improvement. 

After introducing the Adam optimization algorithm, the 

accuracy of the traditional YOLO V3+Adam model has 

reached 63.55%, and has significantly improved to 85.47% 

after adopting the proposed training strategy, indicating the 

important role of the algorithm in model performance 

improvement. The accuracy of the model constructed in this 

study is 66.81% on the 5-Way 1-Shot task, and has 

significantly improved to 88.16% after adopting the proposed 

training strategy, demonstrating the significant model 

performance improvement using the proposed training 

strategy. In summary, the training strategy proposed in this 

study improved the performance of different models, and 

especially significantly improved the accuracy of the 

traditional YOLOV3+Adam and the model constructed in this 

study. Therefore, the training strategy proposed in this study 

also had good optimization effects on low-resolution datasets, 

which helped improve the performance of the electrical 

control equipment detection model. 
 

 

6. CONCLUSION 
 

This research studied the electrical control equipment patrol 

inspection method based on high quality image recognition 

technology. Electrical control equipment patrol inspection 

images were enhanced based on DCEN in order to improve the 

visibility of equipment anomaly features, which helped reduce 

the misjudgment and misdetection risks during the patrol 

inspection process. The patrol inspection image set was 

reconstructed in super resolution, and was combined with clear 

images to construct a new image set, which improved the 

patrol inspection efficiency. The electrical control equipment 

detection process based on YOLO V3 was elaborated. 

Combined with experiments, the loss variation curve graphs of 

Retinex-Net and DCEN enhanced network were presented, 

which demonstrated that DCEN enhanced the low-

illumination patrol inspection images more effectively. Model 

performance before and after the enhancement and 

reconstruction processing was compared, which verified the 

need to balance model performance and real-time performance 

in practical applications. If the goal was to achieve the highest 

detection precision, the "enhancement+reconstruction" 

processing should be chosen. In addition, P-R curves before 

and after BGN and Adam processing were compared, which 

verified that BGN and Adam optimization algorithm were 

beneficial for improving the precision of the electrical control 

equipment detection model. The accuracy and performance of 

different equipment detection models were compared, which 

verified that the electrical control equipment detection model 

constructed in this study had good performance in terms of 

precision and training time. Then the experimental results on 

high- and low-resolution data sets were compared, which 
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verified that the training strategy proposed in this study had 

good optimization effects on both data sets, which helped 

improve the performance of the electrical control equipment 

detection model. 
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